

Science and Technology Facilities Council

PIP-II Status Update

Peter McIntosh – Principal Investigator Jon Lewis – Project Manager

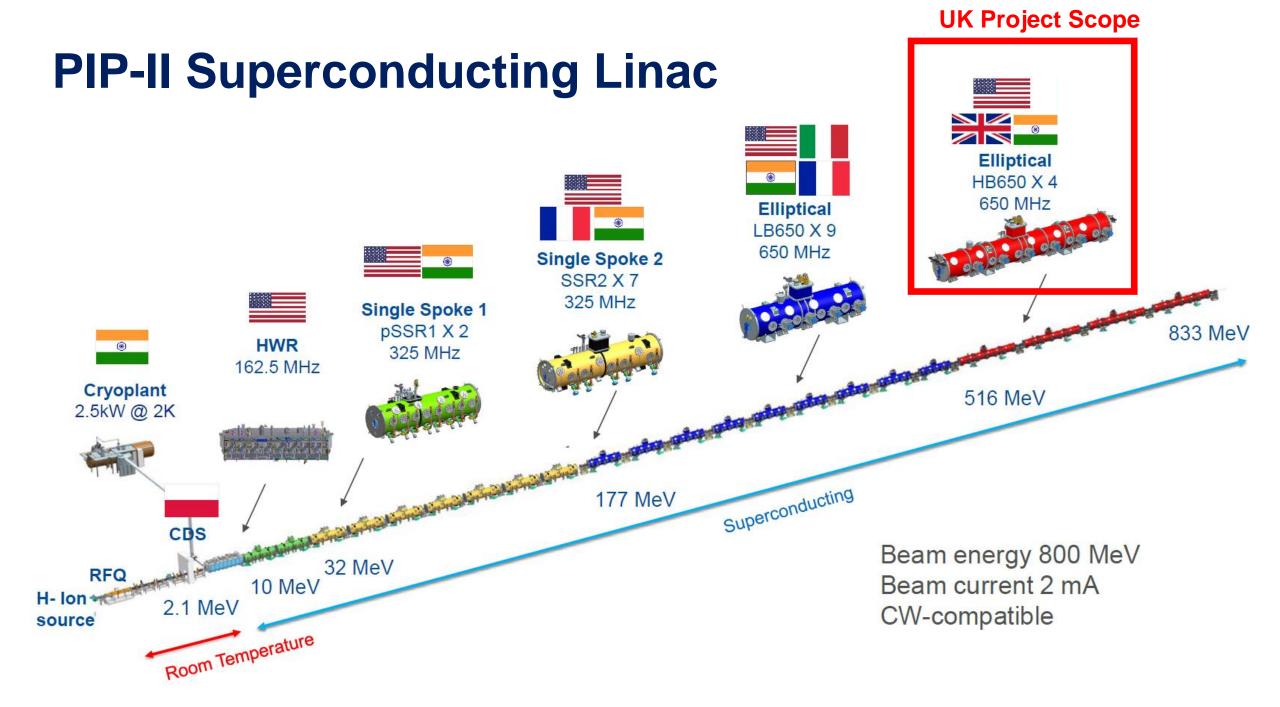
LBNF/DUNE UK Meeting 4th – 5th Jul 2022

Agenda

1 Recap – Project Goals

A brief reminder of PIP-II's major outputs

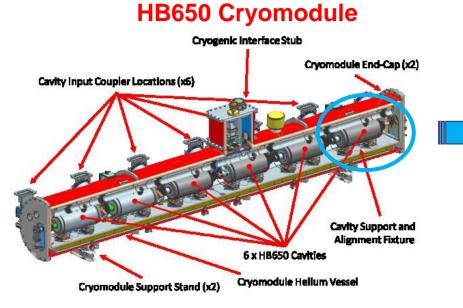
2 Milestones Achieved


An update of successes since Jan

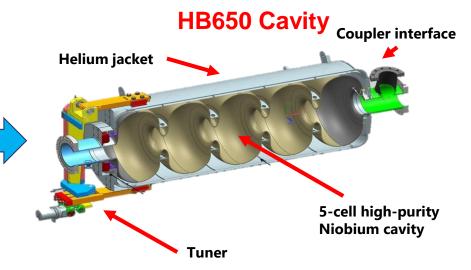
2 Project Update

Update on project progress since Jan

4 Conclusions


Project Goals

We are.... Working within an international collaboration to deliver 3 high beta superconducting RF cryomodules to FNAL.


FNAL is.... Building a new 1.2 MW Proton beam accelerator & upgrading infrastructure to provide the concentrated Neutrino beam to 'drive' LBNF/DUNE

Design of the B=0.92 JNI CITE UK Project Start: April 2019 STFC delivers by: Dec 2025* *CV-19 impact

UK PIP-II Contribution

Cryomodule (CM)	PIP-II
Operating Temperature (K)	2
Number of Cavities	6
Energy Gain (MeV)	~110
Dynamic Load (W)	130
Static Load (W)	32
CM Length (m)	9.8
Number of Cryomodules	3

Cavity	PIP-II		
Frequency (MHz)	650		
Cavity Beta	0.92		
Gradient (MV/m)	19		
Quality Factor Qo	>3 x 10 ¹⁰ (N2 Doped)		
Number of Cells	5		
Cavity Dynamic Load (W)	<22		
Cavity Length (m)	1.42		
Number of Cavities	18 (+2)		

Scope/Delivery Dates

WP5.1 SRF Infrastructure

- Provision of all preparation, testing and assembly facilities.
- Extensively modify existing SRF facilities and provision of new cleanroom.
- Implementation of new cryomodule vessel assembly fixtures.


WP5.2 UK Industry Development

- Demonstration of UK PIP-II cavity demonstrator fabrication.
- Development of EBW processes for Nb material.
- Provision of all SRF cavity fabrication facilities.

WP5.3 Cavity Qualification

- Qualification of 18 (+2) x HB650 cavities to FNAL specifications.
- Procurement of Niobium material and cavity fabrication from industry.
 Integration into testing infrastructure and validate.

WP5.4 Cryomodule Integration

• Assembly of 3 x HB650 cryomodules to FNAL specifications.

- Prepare HB650 cavities and assemble cavity string in cleanroom.
- Integrate cavity string into HB650 cryomodule vessel and acceptance test.
- Safely transport integrated cryomodules to FNAL and acceptance test.

Signing ceremony: Mark Thomson (STFC-UKRI) and Nigel Lockyer (FNAL) May 11th 2021.

STFC UKRI	Acceptance	
Deliverables	Early Date	
HB650 CM1	Jan-2025	
HB650 CM2	Jul-2025	
HB650 CM3	Dec-2025	

Project Goals – Work Packages

WP1 – SRF Infrastructure

Mark Pendleton

WP2 – UK Industry Dev. Anthony Gleeson

WP0 Project Management Jon Lewis

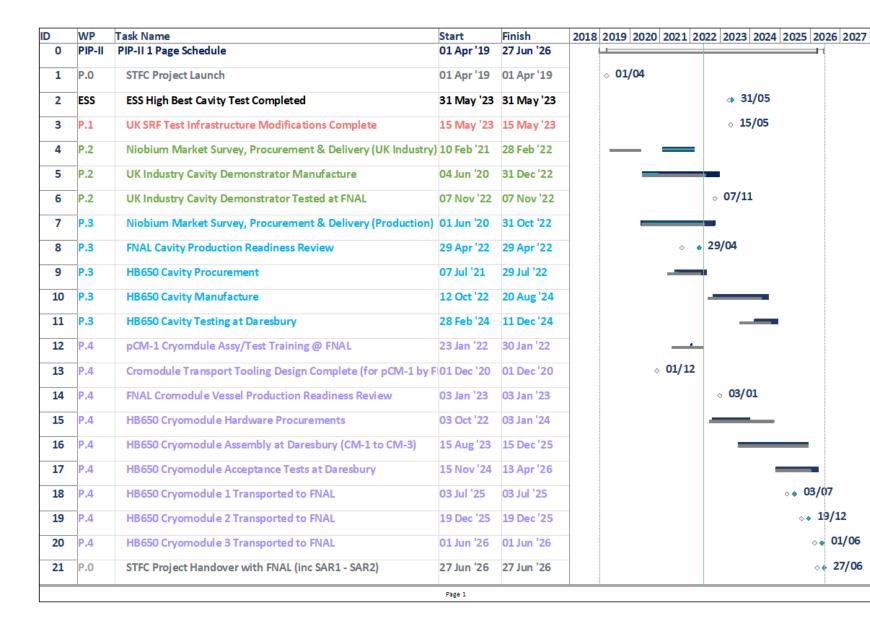
WP3 – Cavity Qualification

Anna Shabalina

WP4 – Cryomodule Integration Shrikant Pattalwar

Milestones Achieved since Jan 22

WP	Description	PPD Date	Working Schedule Date (Actuals = A, Forecast = F)
FNAL	Final Design Review (FDR) for B.92 Cavities	Sep 21	April 2022 A
WP3	Production cavity manufacture tender released	Oct 21	April 2022 A
WP2	D-1 cavity manufactured by TWI	Oct 21	June 22 A
WP3	Niobium for 'production run' of cavities delivered	Oct 21	July 22 F
WP1	ISO4 Cleanroom tender released	Dec 21	Dec 21 A
WP 1	Cleanroom complete (full scope, not just initial contract)	Sep 22	July 22 F



Work Package Update

Project Management: WP0

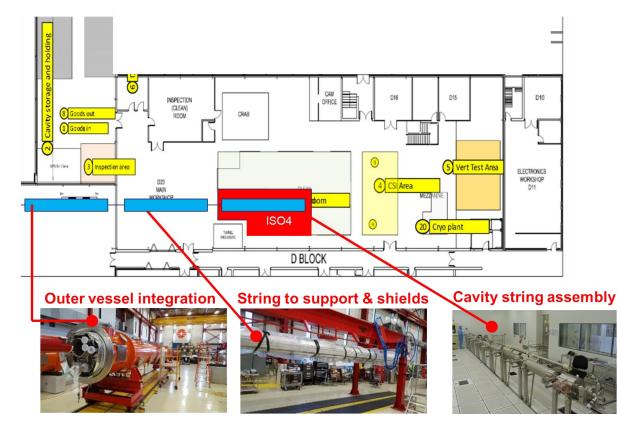
PIP-II Cryomodule Delivery Plan

Grey bars = Jan 22 Plan Dark blue bars = Jun 22 Plan White diamonds = Jan 22 m/s Green diamonds = Jun 22 m/s

Key messages Aggregate delay > 6 months

Primary drivers:

- Nb material quality (9-mo) OTIC (China).
- Cavity Production Readiness Review (6-mo) - FNAL.

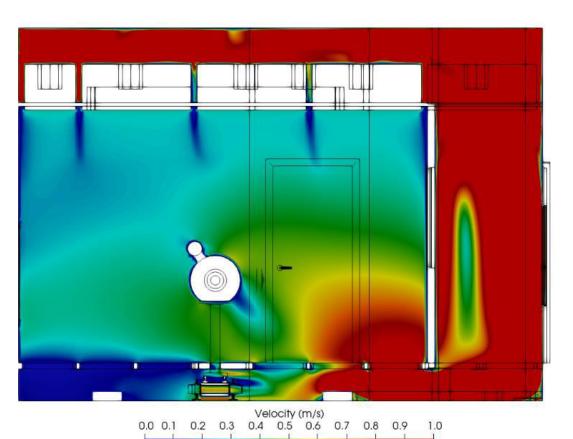

Work Package Update

Technical Workpackages: WP1 – 4

WP1 – PIP-II SRF Infrastructure

ISO4 Cleanroom – Cavity-string assembly

- Sudlows contracted to complete design, installation and commissioning of 14m x 5m ISO4 cleanroom.
- Expect to be completed Jul 22, final stage installation and commissioning underway.

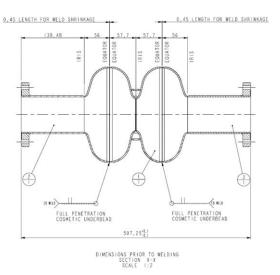

WP1 – PIP-II SRF Infrastructure

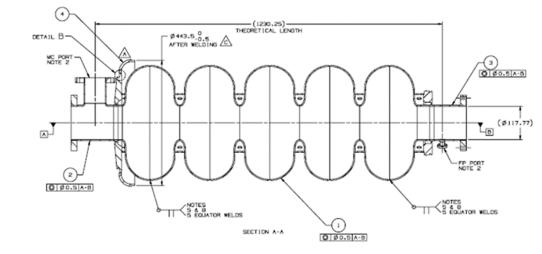
ISO4 Cleanroom – Rail System

- Complete CFD model of all support arrangements for cavity string - underfloor rail system (and 'lollipop' stands).
- Complete civil works; install rail system; deep clean; fit fan filter units.
- Commission new facility, balance air flow between new & existing ESS cleanrooms - common air handling systems.

CFD confirms laminar flow maintained across cavity interfaces.

WP2 – UK Industry Development




New Steigerwald Electron Beam Welder installed and commissioned at TWI (Dec 2020)

Components supplied to TWI to manufacture 2-cell test cavity

2-cell test cavity Deliverable D1 (1.3 GHz) 5-cell 'Demonstrator' cavity **Deliverable D2 (650 MHz)**

WP2 – UK Industry Development – D1 Cavity

D1 Tooling

- Tooling design for D1 completed by NAMRC.
- D1 tooling manufacture completed.

Cavity Manufacture

- Cavity half cells (Cu) pressed by SEI.
- Cavity components prepared and EBW by TWI.

Dumbell Welding

End-Group Welding

RF Measurements and Assembly Prior to Welding

WP2 – UK Industry Development – D1 Cavity

D1 Stiffening Ring

• Dimensional issues with stiffening ring strips required remanufacture.

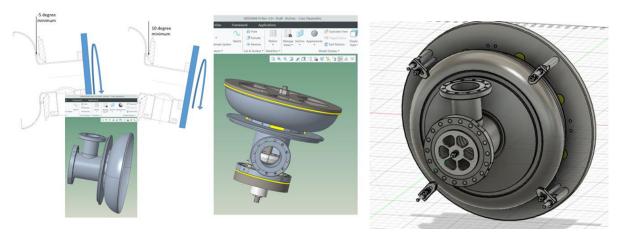
D1 Post-EBW Checks

- Digital dial gauge use to record equator run-out vs angular position.
- Equator 1 and Equator 2 both tested.

Total length:

- Theoretical 506.35mm
- Measured 501.24mm

Flange face parallelism:

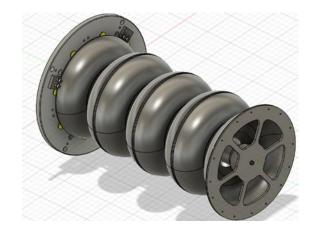

- Measured 0.66° off axis
- ~1.7mm across the full flange

Not expected to be problematic for RF testing – ready to ship to FNAL for N2-doping & tests. 16

WP2 – UK Industry Development – D2 Cavity

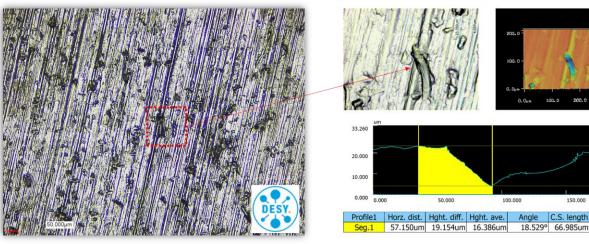
D2 Tooling

- Tooling design for D2 completed by NAMRC.
- D2 tooling manufacture completed.



D2 Cavity Manufacture

- Cavity half cells (Cu) pressed by SEI.
- Dimensional conformity (CMM) checks completed ready to start Nb sheet forming.


- TWI still do not yet have the required Nbcomponent etch facility – extensively delayed.
- TWI missed opportunity to bid for cavity production tender launched April 22!
- Intention now to have D2 manufactured to include in cryomodule integration.
- TWI to complete D2 and integrate Titanium cavity helium jacket manufacture.

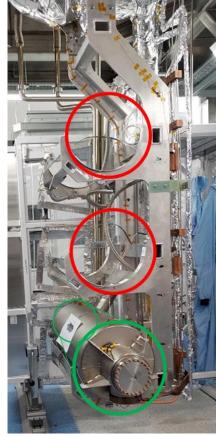
WP3 - PIP-II Cavity Qualification

Production Niobium Procurement

- Surface quality issues identified for disc material during initial inspection at DESY (Sept 21).
- At least 10 30 μm surface defects/holes (depth) for all sheets (>250 discs).

- OTIC solutions verified by ECS at DESY:
 - 90% success rate for repair sheets within thickness tolerance.
 - 75% success rate for remanufacture.
 - Only 3/187 sheets unrecoverable.
- First batch of material expected in July 22

Fast Cooldown for High Qo


• Fast cool-down from 45 - 5K at 20K/min to expel the magnetic field trapped in the cavity

- 10x faster than for ESS!

- Modelling suggests cooling 3 x 650MHz cavities has too much heat load for the cryoplant - propose to test only one cavity per cold test.
- Additional gas storage capacity being implemented.
- Plan to validate with a single ESS cavity to verify capability.

This test must not interfere with ESS project completion.

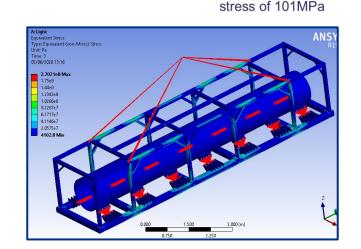
Still awaiting opportunity for testing!

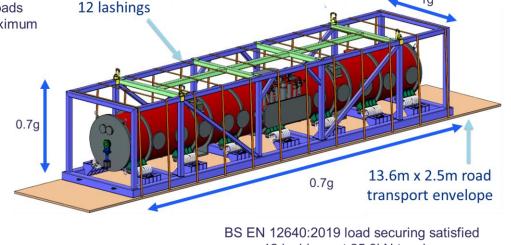
WP4 – Cryomodule Integration

Cryomodule Transport Frame

STFC designed frame and completed Final Design Review (FDR) in Sept 20.

Frame Validation Methodology


STFC frame manufactured by FNAL for use with the HB650 prototype cryomodule (pCM):


- pCM will be operationally tested at FNAL end 2022 (delayed by 6-months)
- pCM to ship to STFC, provisional acceptance tests visual, mechanical, RF and vacuum.
- pCM will ship back to FNAL retested to verify its operational performance.

First frame tests performed at FNAL in Apr22, exceeded load/stress verification by factor of 2! 12 lashings BS EN 12195-1:2010 loads applied (combined) Maximum

32-tonne load test @ FNAL - Jan 22

12 lashings at 25.3kN tension

Conclusions

Conclusions

• Extensive delays impacting UK PIP-II delivery project:

- Nb material quality non-conformance with OTIC Ningxia (China).
- Production cavity PRR documentation from FNAL.
- Late completion of D2 and inability for TWI to bid into cavity production tender.
- Unavailability of Nb-component etch facility at TWI for D2 cavity.

Significant successes however achieved:

- New ISO-4 cleanroom installation almost complete on-time and within budget.
- D1 cavity manufactured by TWI, SEI and NAMRC UK First!
- PIP-II production cavity tender launched (and now closed).
- Cryomodule transport frame manufactured and first tests successfully completed at FNAL.

• Next stage planning (6-months):

- Cavity coupler and tuner Final Design Reviews.
- First HB650 cryomodule sub-system FDRs.
- Significant procurement exercises anticipated this year.

Science and Technology Facilities Council

Thank you

Acknowledgements

WP0 Kieran Cheetham
WP1 Mark Pendleton
WP2 Anthony Gleeson
WP3 Alan Wheelhouse
WP4 Shrikant Pattalwar
Mitchell Kane

Science and Technology Facilities Council

@STFC_matters

s 💽 Scienc

Science and Technology Facilities Council