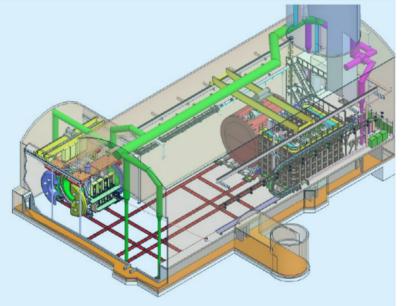
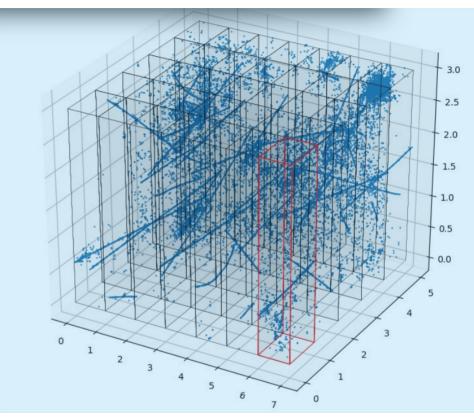
Pandora ND future plans and validation


Steve Dennis & Jingyuan Shi for Pandora ND team

Future Plans for ND Reco.

- My laptop broke yesterday, so these slides have been hastily recreated.
 - Apologies if they're not the finest design you've ever seen.
- The DUNE ND complex is, uh, complex.
 - Lots of new challenges for reconstruction.
- Pandora is extremely well developed and validated for 3x2D readout LArTPCs.
 - But the ND doesn't have one of those.
 - Although right now we pretend.
- Need new development for additional subsystems.
 - And matching between them.
- Everything everywhere all at once.

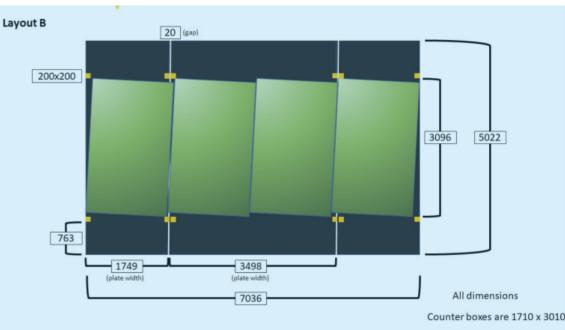
DUNE ND Complex


Phase I: ND-LAr (movable) TMS (movable) SAND (on-axis)

Phase II: ND-LAr (movable) MCND / ND-GAr SAND (on-axis)

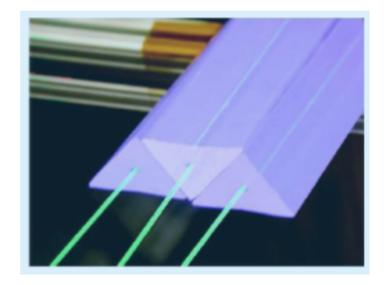
ND-LAr

- Pixel Readout LArTPC
 - Native 3D readout rather than 3x2D.
 - Short drift, good timing.
- Unprecedented multiplicity.
 - A FD event might have one neutrino.
 - An ND event will have 50.
- Current Pandora reconstruction projects 3D hits in 3x2D planes to leverage the work that has gone into 3x2D, and maintain similarity to the FD reco.



Future of ND-LAr

- Critical path forward: native 3D reconstruction.
 - Utilise power of the 3D technology, especially for slicing.
 - Buy in from the detector team to consider Pandora as their primary reconstruction requires this to be considered the highest priority.
 - Required per NDLAr prototype use case.
- But of course 2D projections are still the natural choice for many algorithms.
 - Eg Deep Learning.
 - For now, sticking with the U,V,W projections but in future alternatives could be chosen (eg X,Y,Z).
- Requires many new Pandora algorithms, will be led UK-led with Bern team in place for development manpower.
 - Staged approach to maintain compatibility with existing Pandora chain.


TMS

- TMS is a weird detector.
 - 1x2D view with "stereo".
- Significant work required to implement into Pandora.
 - Existing infrastructure reusable.
 - Unclear how many actual algorithms will be reused.
- In discussion with existing TMS team to merge existing efforts into Pandora's infrastructure.
- Distant future: using TMS tracks to seed ND-LAr reco.

ArgonCube 2x2 (ProtoDUNE-ND)

- ProtoDUNE ND is being worked on right now.
 - Expect first data ~January.
 - Evaluation of physics performance in 2023/2024.
 - Strict deadline for Pandora to be selected as the reconstruction of choice.
- All the same challenges as ND-LAr.
- But a different spectrometer:
 - MINErVA planes.
 - 2x2D scintillator readout, with novel triangular design.
- Argon work led by UK, searching for manpower for MINErVA matching.

Other Detectors

- There is an Italian SAND team in place to implement Pandora reconstruction.
 - To be combined with UK expertise.
- MCND? Still up in the air, but if it's ND-GAr our extremely powerful 3x2D performance should place us in a great position as soon as any work begins.
 - ND-GAr group currently operating their own reco using a Kalman filter on toy MC.
 - Expect that Pandora can ramp up fast given properly simulated MC.
 - Already a team working on ND-GAr using Pandora for ILC.
- Global reco plans still in development.
 - $2x2 \rightarrow$ MINErVA planes matching ASAP due to time constraints.
 - ND-LAr -> TMS matching.
 - MCND?

Summary (of Steve's bit)

- The Pandora ND Reco Team has prioritised LAr-ND up until now.
- Now attracting significant interest from other detector groups.
- Many new tasks and challenges.
- And they sort of all have to be done at once.
- An exciting time for the reco.
- Are you interested in getting involved? Reach out to me (or have your supervisor do it).
- Now, please welcome Jing to present the validation work so far.

Validation

- Uses edep-sim with a Pandora interface.
 - Currently projects native hits into 3x2D views to utilise existing Pandora algorithms.
 - Interface by Alex Moor and John Back.
- Utilising existing algorithms benefits ND to FD comparisons.
- Studies performed with single particle and single GENIE neutrino events.
 - Full spill validation samples underway.

Stages of validation

Single particle (0.1 to 4 GeV)

Muon: A. Moor Photon: T. Yang Pion: M. Alrashed Electron: J. Shi Proton: J.Shi

v events

 v_{μ}^{2} : J. Back v_{e}^{2} : J. Shi

Full spill sample

Ongoing...

v_{μ} event: J. Back

CCQE μ + 1p: 10,479 events, correct reco'd eff = 75.6%

# Matched particles	0	1	2	3+
μ	0.2%	91.8%	7.8%	0.3%
р	9.7%	81.3%	7.9%	1.0%

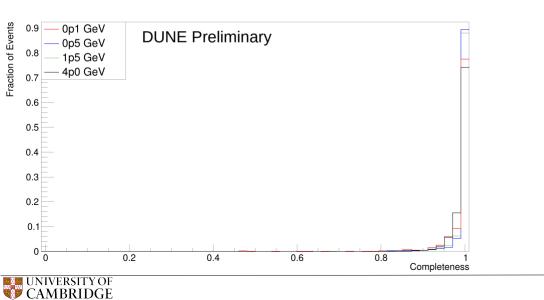
CCDIS μ + 1p + 1 π * : 1,042 events, correct reco'd eff = 43.6%# Matched particles0123+ μ 2.6%89.6%7.4%0.4%p22.0%63.8%12.8%1.4% π^+ 9.3%71.6%17.1%2.0%

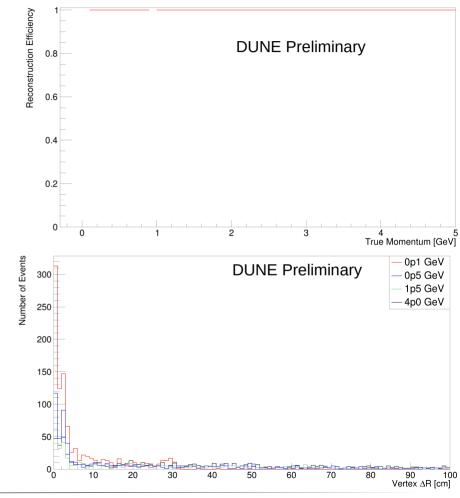
CCDIS μ + 1p + 1 π ⁰ : 1,459 events, correct reco'd eff = 24.8%

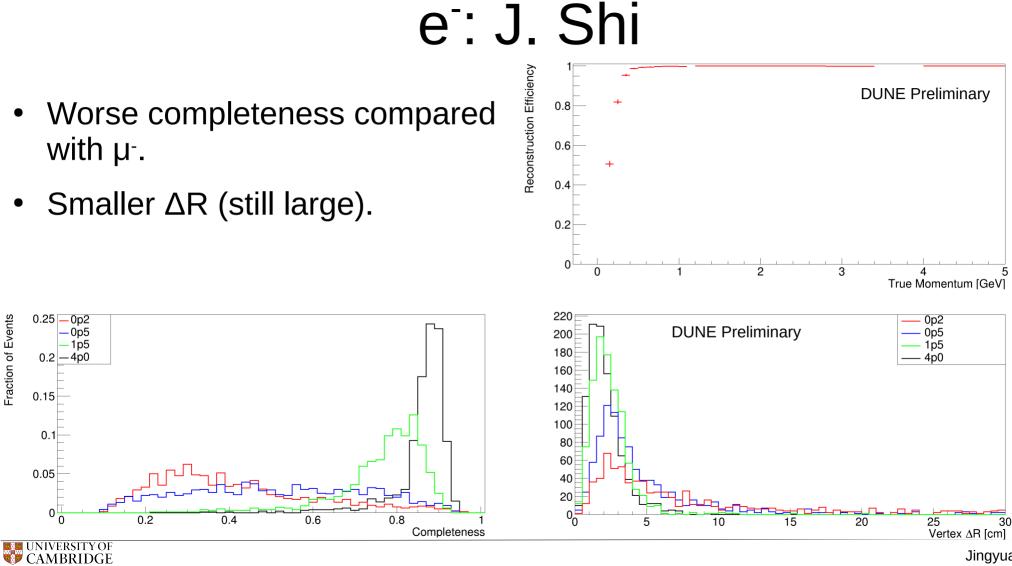
	# Matched particles	0	1	2	3+
	μ	3.2%	88.5 %	8.2%	0.2%
	р	20.6%	66.8 %	11.0%	1.6%
	~ Υ ₁	8.4%	86.2%	5.1%	0.3%
\langle	$\mathbf{x}\mathbf{y}_2^{-}$	55.9%	41.1%	2.8%	0.2%

π⁰

v_e CCQE event: J. Shi

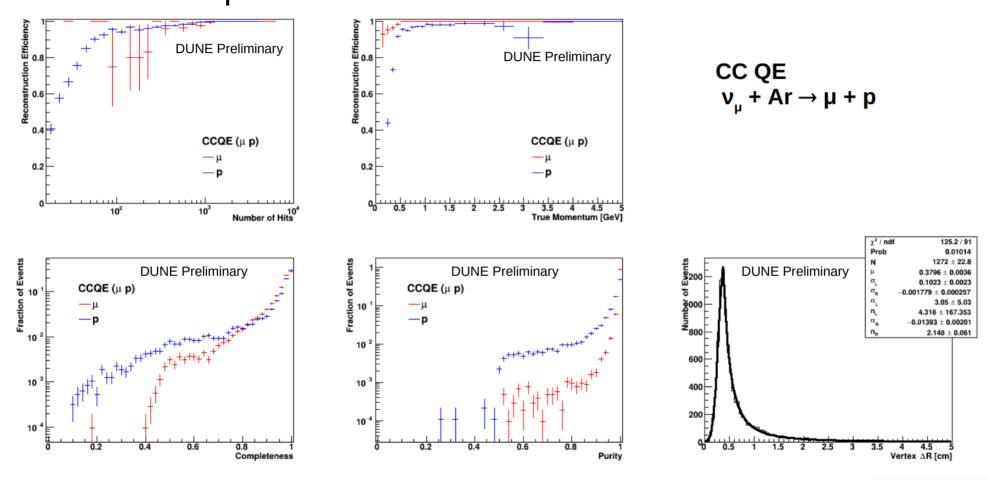

• CCQE e + 1p: 9884 events, correct: **69.1%**


Matched particles	0	1	2	3+
е	0.1%	91.2%	8.5%	0.2%
р	15.6%	75.4%	8.0%	1.0%

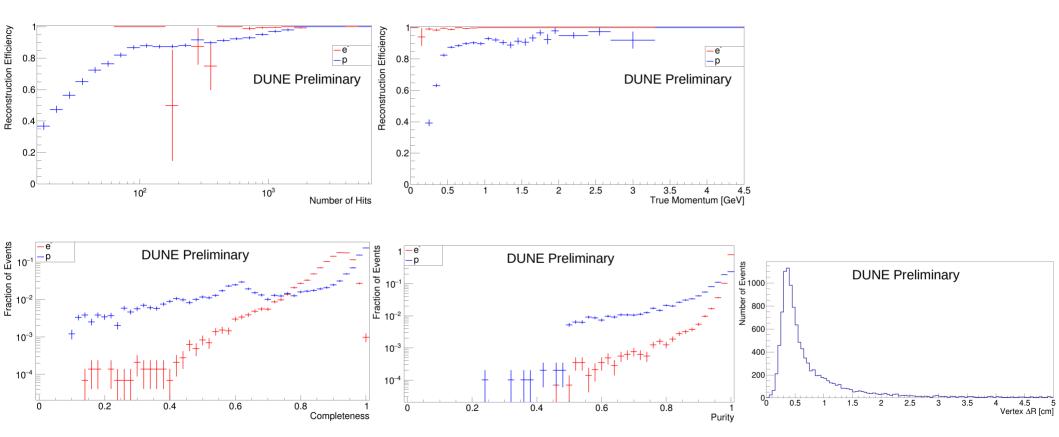

μ⁻: A. Moor

- Ideal performance in completeness.
- Large ΔR (distance between true and reco vertices).

Jingyuan Shi



• Smaller ΔR (still large).


Fraction of Events

Jingyuan Shi

v CCQE event: J. Back μ

v CCQE event: J. Shi e

Full-spill sample

- Full-spill samples have been generated by Jeffrey Kleykamp.
- Testing on the way by John Back.
- Tingjun has been generating GENIE events.

Summary

- Pandora shows great flexibility.
 - -Strong performance pre-tuning.
 - -In future, parameters will be tuned for ND LAr.
- Ongoing full-spill sample validation.
- Exploring algorithms to reconstruct based on native 3D hits.

