Transition Radiation from a Metal Foil. OTR and COTR

G. Stupakov SLAC National Accelerator Laboratory

May 19, 2022

Transition radiation - angular distribution

Energy radiated per unit frequency ω per unit solid angle, $\beta=v/c$

$$\frac{d^2 W}{d\omega d\Omega} = \frac{Z_0 q^2}{4\pi^3} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2}$$
$$\approx \frac{Z_0 q^2}{4\pi^3} \frac{\theta^2}{(\gamma^{-2} + \theta^2)^2}$$

TR is localized at small angles $\theta \sim 1/\gamma$ relative to the forward direction. For 45 MeV beam, $\gamma = 88$. The spectrum does not depend on frequency ω .

Radiation energy on the detector

Integrating $d^2W/d\omega d\Omega$ over the solid angle gives the spectrum of radiation

$$\frac{d\mathcal{W}}{d\omega} = 2\pi \int_0^{\pi/2} \sin\theta d\theta \frac{d^2\mathcal{W}}{d\omega d\Omega} = \frac{Z_0 q^2}{4\pi^2} \left[\left(\frac{1}{\beta} + \beta \right) \operatorname{arctanh}(\beta) - 1 \right]$$

We assume incoherent radiation, then the energy radiated by the beam $\propto \mathit{N_e}$ in the bunch.

Assume Q = 1 nC and the collection angle 90°.

	$0.5-1~\mu m$	$1-5~\mu m$
Energy [nJ]	0.027	0.021

Energy on the detector depends on collection angle

If spectral sensitivity of the detector is available, it can be taken into account.

COTR versus OTR

Incoherent radiation (no microbunching) is proportional to N_e , coherent radiation is proportional to N_e^2 .

COTR will have a different angular dependence which can be measured by rotating the foil. (Calculations were done for $\gamma = 500$, 75 mrad collection angle, $\lambda \approx 0.6 \ \mu$ m).

Energy on the detector depends on collection angle

Radiated TR energy for 1nC beam as a function of the collection angle θ in 100 nm window.