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Masses in the Stellar Graveyard
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GW170817

Binary neutron star merger
A LIGO / Virgo gravitational wave detection with

associated electromagnetic events observed by over .
70 observatories. & Distance

130 million light years
12:41:04 UTC
Q A gravitational wave from a
‘ binary neutron star merger is detected.

gravitational wave signal
Two neutron stars, each the size
of a city but with at least the
mass of the sun, collided with
each other.

ﬁ Discovered
17 August 2017
™\ Type
- Neutron star merger

gamma ray burst
A short gamma ray burst is an
intense beam of gamma ray
radiation which is produced
just after the merger.

+ 2 seconds
A gamma ray burst
is detected.

GW170817 allows us to
measure the expansion rate of
the universe directly using
gravitational waves for the first
time,.

+10 hours 52 minutes
A new bright source of optical
light is detected in a galaxy
called NGC 4993, in the
constellation of Hydra.

Detecting gravitational waves kilonova
from a neutron star merger Decaying neutron-rich
allows us to find out more about material creates a glowing

a. the structure of these unusual kilonova, producing heavy
objects. metals like gold and +11 hours 36 minutes
~y, platinum. Infrared emission observed.

Explorer

This multimessenger event
provides confirmation that
neutron star mergers can
produce short gamma ray bursts.

The observation of a kilonova
allowed us to show that neutron
star mergers could be
responsible for the production
most of the heavy elements, like
gold, in the universe.

Observing both electromagnetic
and gravitational waves from the
event provides compelling
evidence that gravitational
waves travel at the same speed
as light.

radio remnant

As material moves away from
the merger it produces a
shockwave in the interstellar

medium - the tenuous material

between stars. This produces
emission which can last for
years.

+15 hours

Bright ultraviolet emission
detected.

+9 days

X-ray emission detected.

+16 days

Radio emission
detected.
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As massive objects such as black holes swirl together

Space-based
Science investigations

Mirror

at half the speed of light, they emit ripples in space called
gravitational waves. A passing wave will stretch the

Tests of
strong gravity
\

Tests of black hole
spacetimes and

dynamics

Cosmological

GW detectors
Gravitational signatures
gravitational waves of dark matter
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cosmology
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arms of an interferometer by different amounts, producing

a light signal that warbles in sync with the wave. p

Spacetime singularities,

phase transitions
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BSM physics,
modified gravity

Fundamental physics

FT in curved spacetime,
information paradox

Astroparticle
physics
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Big new ideas
Current gravitational wave detectors (red) are huge. The ones scientists
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Sensitivity
Comparison
LISA: launch date ~2034

aLIGO: scheduled upgrades over
the next decade: ~2-3x increase in
range (Mpc)

Voyager: ~$200M (existing 4km
LIGO facilities) + 1 in India.

CE/ET: new GW facilities at the
10-40 km & ~$1-2B scale, operating
~2030-2040

MAGIS: Atom based laser
interferometers
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FIG. 1. Amplitude spectral densities of detector noise for the next-generation laser interferometers Cosmic
Explorer, LIGO Voyager, the proposed Australian NEMO detector, and the three paired detectors of the trian-
gular Einstein Telescope. Detector noise curves are also shown for the proposed MAGIS-km atom interfer-
ometer and envisioned space-based follow-on detector (MAGIS-SPACE). The sensitivity curves of Advanced
LIGO’s last observation run (aLIGO O3) and of the Laser Interferometer Space Antenna (LISA) are shown
for comparison.



LIGO
Voyager

Replacing LIGO glass optics
with cryogenic silicon

High thermal conductivity to
avoid thermal distortion
instabilities

Leverages existing facilities
4-5x improvement over
Advanced LIGO (2023)
Uses newer, less established

technologies
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FIG. 5. (a) Projected gravitational wave strain sensitivity for MAGIS-100 and follow-on detectors. The



Cosmic Explorer / Einstein Telescope

New, very large, GW Facilities
ET: 10 km, underground in Europe
- New technologies
CE: 1 or 2, 20-40 km, probably USA

- Mostly scaling up of existing
LIGO technologies; lower risk

‘The Next Generation Global
Gravitational Wave Observatory:

The Science Book”
https://arxiv.org/abs/2111.06990
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Summary

1. GW Detectors (on the ground and in space) cover many decades in
energy/frequency.

GWs are unique messengers carrying unigue messages.

Synergy with Electromagnetic, neutrino, ...: multi-messenger astrophysics
Nature of matter in the universe

Expansion history: back to z~10 in the next decade

What is the structure of spacetime and how do DM and DE look with
gravitational vision?
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