

Decay Ring Options for VLENF

Alex Bogacz and Vasiliy Morozov

Overview

- Conventional Decay Ring (3 GeV)
 - Dipoles 1.2 Tesla
 - Quads
- Racetrack vs Dogbone Ring
- Acceptance studies (OptiM and MAD-X tracking)
- Combined function magnet Ring
- Solenoid Ring
 - Axially symmetric focusing Solenoids
 - Dipole bends
- Acceptance studies (OptiM tracking)

Racetrack vs Dogbone Decay Ring

Racetrack vs Dogbone Ring - Optics

Ring Optics (90° doublets + 30° FODO)

qFL	L[cm]=100	G[kG/cm]=0.2
qDL	L[cm]=100	G[kG/cm]=-0.2

bend	L[cm]=250	B[kG]=12.575
•	_[cm]=60 _[cm]=60	G[kG/cm]=1.12 G[kG/cm]=-1.09

qFL L[cm]=100 G[kG/cm]=0.2L[cm]=100 G[kG/cm]=-0.2

Operated by JSA for the U.S. Department of Energy

VLENF phone Mtg. April 12, 2012

Ring (half) – Beam Envelope

Thomas Jefferson National Accelerator Facility

VLENF phone Mtg. April 12, 2012

Dynamic Aperture – 80 turns

\$MuDecay=2.2e-6; => 2.2e-06 \$C=12150*2; => 24300 \$NTurn=\$gamma*\$MuDecay*\$beta*\$c/\$C; => 77

$$\varepsilon_{\rm N}$$
 = 30 mm rad $\sqrt{\beta \varepsilon}$ $\sigma_{\Delta p/p}$ = 0.05 $\sigma_{\Delta p/p}$

Transverse Acceptance – 80 turns

$$\varepsilon_{\rm N}$$
 = 30 mm rad $\sqrt{\beta \varepsilon}$ $\sigma_{\Delta p/p}$ = 0.05 $\sigma_{\Delta p/p}$

Racetrack Lattice in MAD-X

Tracking in MAD-X

- 1000 particles, ε_{xN} = 30 mm·rad, ε_{yN} = 30 mm·rad, $\sigma_{\Delta p/p}$ = 0.05, same collimation as Alex
- Limitations due to physical apertures ⇒ Stronger focusing needed to improve acceptance

Combined-Function FODO Lattice

Focusing strength is the same as of the same-length separate-function lattice

Solenoid Ring

P = 3 GeV/c

racetrack ring (256 meter circumference)

Solenoid Ring (Half)

P = 3 GeV/c

racetrack ring (256 meter circumference)

solenoid L[cm]=100 B[kG]=47-103 r[cm]=25

Dynamic Aperture – 70 turns

$$\varepsilon_{\rm N}$$
 = 30 mm rad $\sqrt{\beta \varepsilon}$ $\sigma_{\Delta p/p}$ = 0.05 $\sigma_{\Delta p/p}$

Summary – Conventional Ring

- Decay Ring (3 GeV Racetrack of 243 meter circumference)
 - 7 m betas, 90 cm hor. dispersion in the Arcs
 - 15 m betas in the Straight
- Acceptance Dynamic Aperture Study
 - transverse: $\varepsilon_N = 30 \text{ mm rad}$
 - momentum: $\sigma_{\Delta p/p} = 0.05$
 - Physical aperture: r = 20 cm (Arc) and r = 25 cm (Straight)
 - 46% dynamic lost after 80 turns
- Compact Ring Optics Linear lattice
 - Dipole bends (2.5 m long, 12.6 kGauss) × 20
 - Doublet focusing Quads (0.6 m long, 1.1 kGaus/cm) × 44
 - FODO focusing Quads (1 m long, 0.2 kGaus/cm) × 38

Summary - Solenoid Ring

- Decay Ring (3 GeV Racetrack of 256 meter circumference)
 - ~250 cm hor. dispersion in the Arcs
 - ~8 m Beta functions Arc
 - ~15 m Beta functions straight
- Acceptance:
 - transverse: $\varepsilon_{\rm N}$ = 30 mm rad
 - momentum: $\sigma_{\Delta p/p} = 0.05$
 - Physical acceptance: r = 25/30 cm
- Compact Ring Optics Linear lattice
 - Axially symmetric focusing Solenoids (4-10 Tesla)
 - Dipole bends (1.2 Tesla)

