Decay Ring Options for VLENF

Alex Bogacz and Vasiliy Morozov

- Conventional Decay Ring (3 GeV)
- Dipoles 1.2 Tesla
- Quads
- Racetrack vs Dogbone Ring
- Acceptance studies (OptiM and MAD-X tracking)
- Combined function magnet Ring
- Solenoid Ring
- Axially symmetric focusing - Solenoids
- Dipole bends
- Acceptance studies (OptiM tracking)

352 meter Dogbone Ring

64 m straight
112 m droplet

Racetrack vs Dogbone Ring - Optics

Arogram
Muon decay at 3 GeV (e-folding)

Ring (half) - Beam Envelope

Program

Dynamic Aperture - 80 turns

$\varepsilon_{\mathrm{N}}=30 \mathrm{~mm} \mathrm{rad}$	$\sqrt{\beta \varepsilon}$
$\sigma_{\Delta \mathrm{p} / \mathrm{p}}=0.05$	$D_{x} \sigma_{\Delta p / p}$

Racetrack Lattice in MAD-X

$\mathrm{D}_{\text {rogram }}$

- 1000 particles, $\varepsilon_{\mathrm{xN}}=30 \mathrm{~mm} \cdot \mathrm{rad}, \varepsilon_{\mathrm{yN}}=30 \mathrm{~mm} \cdot \mathrm{rad}, \sigma_{\Delta \mathrm{p} / \mathrm{p}}=0.05$, same collimation as Alex
- Limitations due to physical apertures \Rightarrow Stronger focusing needed to improve acceptance

Jefferson Lad
$x(\mathrm{~cm})$
Thomas Jefferson National Accelerator Facility

Combined-Function FODO Lattice

Drogram

- Focusing strength is the same as of the same-length separate-function lattice

$$
\mathrm{P}=3 \mathrm{GeV} / \mathrm{c}
$$

racetrack ring (256 meter circumference)

Jefferson Lab

Solenoid Ring (Half)

$$
P=3 \mathrm{GeV} / \mathrm{c}
$$

racetrack ring (256 meter circumference)

[^0]
Dynamic Aperture - 70 turns

\$MuDecay=2.2e-6; => $2.2 \mathrm{e}-06$
\$C=25600; => 25600
\$NTurn=\$gamma*\$MuDecay*\$beta*\$c/\$C; => 73.

$\varepsilon_{\mathrm{N}}=30 \mathrm{~mm} \mathrm{rad}$	$\sqrt{\beta \varepsilon}$
$\sigma_{\Delta \mathrm{p} / \mathrm{p}}=0.05$	$D_{x} \sigma_{\Delta p / p}$

initial
1.000000

Jefferson Lab

Program

- Decay Ring (3 GeV Racetrack of 243 meter circumference)
- 7 m betas, 90 cm hor. dispersion in the Arcs
- 15 m betas in the Straight
- Acceptance - Dynamic Aperture Study
- transverse: $\varepsilon_{\mathrm{N}}=30 \mathrm{~mm}$ rad
- momentum: $\sigma_{\Delta p / p}=0.05$
- Physical aperture: $\mathrm{r}=20 \mathrm{~cm}$ (Arc) and $\mathrm{r}=25 \mathrm{~cm}$ (Straight)
- 46\% dynamic lost after 80 turns
- Compact Ring Optics - Linear lattice
- Dipole bends (2.5 m long, 12.6 kGauss) $\times 20$
- Doublet focusing - Quads (0.6 m long, $1.1 \mathrm{kGaus} / \mathrm{cm}$) $\times 44$
- FODO focusing - Quads (1 m long, $0.2 \mathrm{kGaus} / \mathrm{cm}$) $\times 38$

Summary - Solenoid Ring

Program

- Decay Ring (3 GeV Racetrack of 256 meter circumference)
- ~250 cm hor. dispersion in the Arcs
- $\sim 8 \mathrm{~m}$ Beta functions Arc
- $\sim 15 \mathrm{~m}$ Beta functions straight
- Acceptance:
- transverse: $\varepsilon_{\mathrm{N}}=30 \mathrm{~mm}$ rad
- momentum: $\sigma_{\Delta p / p}=0.05$
- Physical acceptance: $\mathrm{r}=25 / 30 \mathrm{~cm}$
- Compact Ring Optics - Linear lattice
- Axially symmetric focusing - Solenoids (4-10 Tesla)
- Dipole bends (1.2 Tesla)

[^0]: solenoid $\quad L[c m]=100 \quad B[k G]=47-103 \quad r[c m]=25$

