SuperBIND Simulations with Thick Plates

Ryan Bayes

April 12, 2012

Ryan Bayes ()

SuperBIND Simulations with Thick Plates

April 12, 2012 1 / 7

- ∢ ∃ ▶

2 Simulation Description

- Charge selection is a premium for SuperBIND.
 - Can achieve increase effective magnetic field by 3/2 if plate thickness is doubled.
 - Larger magnetic field results in more bending.
 - Less scattering if the number of scintillator interfaces is decreased.
- Can also decrease the number of channels for a given fiducial volume.
 - Number of channels a major driver for the costing of a detector
- What do we gain(lose) by assuming thicker steel plates?

SuperBIND with 2 cm Plates

- Generated GENIE simulations of SuperBIND with 2 cm plates
 - Used same detector dimensions— 5 m \times 5 m \times 20 m.
 - Same octagonal cross-sectional geometry.
 - Used same magnetic field— empirical fit of model, toroidal geometry.
 - Using μ^- focussing field.
- Consider simple charge cuts.
 - Of reconstructed u_{μ} CC event, what fraction have correct charge?

SuperBIND Simulations with Thick Plates

More complicated Charge Current Selection Analysis

- Can apply slightly less restrictive cuts than before.
 - Charge current selection reduced from 6.5 to 4.0.
 - Other cuts are the same as before.
- ν_{μ} CC efficiency significantly incease.

More complicated Charge Current Selection Analysis

- Difference between this simulation and previous simulation is significant
- ν_{μ} CC efficiency more than doubles.
- Further improvements needed to get to efficiency goals.

SuperBIND Simulations with Thick Plates

• Very different from distributions produced by 1 cm Fe plate simulations.

ъ

ヘロン 人間 とくほとく