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Why Thicker Plates?

Charge selection is a premium for SuperBIND.
Can achieve increase effective magnetic field by 3/2 if plate
thickness is doubled.
Larger magnetic field results in more bending.
Less scattering if the number of scintillator interfaces is decreased.

Can also decrease the number of channels for a given fiducial
volume.

Number of channels a major driver for the costing of a detector

What do we gain(lose) by assuming thicker steel plates?
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SuperBIND with 2 cm Plates

Generated GENIE simulations of SuperBIND with 2 cm plates
Used same detector dimensions— 5 m× 5 m×20 m.
Same octagonal cross-sectional geometry.
Used same magnetic field— empirical fit of model, toroidal
geometry.
Using µ− focussing field.

Consider simple charge cuts.
Of reconstructed νµ CC event, what fraction have correct charge?

1 cm Steel plate, µ− focussed
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More complicated Charge Current Selection Analysis

Can apply slightly less restrictive cuts than before.
Charge current selection reduced from 6.5 to 4.0.
Other cuts are the same as before.

νµ CC efficiency significantly incease.
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More complicated Charge Current Selection Analysis

Difference between this simulation and previous simulation is
significant
νµCC efficiency more than doubles.
Further improvements needed to get to efficiency goals.

1 cm Fe plates
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2 cm Fe plates
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Likelihood Distributions

Very different from distributions produced by 1 cm Fe plate
simulations.

Likelihood distributions for
σq/p/(q/p)
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