Preparing a LOI

Arogram

- I met with Stephen Parke on March $26^{\text {th }}$ and he encouraged us to submit a LOI for consideration at the June PAC
- Must submit to PAC by May $18^{\text {th }}$
- http://www.fnal.gov/directorate/program_planning/phys_adv_com /PACdates.html
- Need not be a "detailed" proposal, but should
- Be detailed enough to judge scientific merit, ie, "is there is enough for the PAC to give serious consideration to what is in the document"
- Large $\delta \mathrm{m}^{2}$ oscillation physics
- v cross-section measurements
- Technology development/demo
- SP said - "Do what you can"
- Stephen said not to include costing
- But we should assemble as much information as possible for our internal discussions
- Outline:
- Overview
- Theoretical \& experimental motivation
- Facility
- Targeting/capture
- Transport/injection
- Decay ring
- Far Detector
- Near Detectors
- For oscillation physics
- For cross-section measurements
- Performance
- Event rates
- MC
- Sensitivities
- x-section
- Conclusions

Writing Assignments

- I will act as editor
- Use TeX/LaTeX, etc
- Volunteers?

VLENF?

"What's in a name? That which

 we call a roseBy any ather name would smell as seweet."

- I have felt strongly that whatever we call this effort, NF should be in the name
- However, recent events have changed my mind
- What is unique?
- A new way to produce high-energy vs

NuBeam

- Abstract
- Neutrino beams produced from the decay of μ s in a racetrack-like decay ring provide a powerful new way to study neutrino physics. The technique offers an alternative method to study large $\delta \mathrm{m}^{2}$ oscillation physics, as well as to perform neutrino interaction studies. This technique is the only way to produce a large sample (factory) of high energy $v_{\mathrm{e}} \mathrm{s}$.

