

PIP-II 2nd Technical Workshop, WG#2 EP and HPR Parameter Study Including Motivation

Vijay Chouhan Fermi National Accelerator Laboratory 12-14 July, 2022 A Partnership of:
US/DOE
India/DAE
Italy/INFN
UK/STFC-UKRI
France/CEA, CNRS/IN2P3
Poland/WUST

Introduction

- High- and low-beta 650 MHz cavities, required for prototype cryomodule and finally in PIP II accelerator, are electropolished for surface processing.
- The setup available at ANL is used for electropolishing (EP) of both types of cavities.

Parameters	Values
Voltage	18 V
Cavity temperature	22 °C (bulk), 9-13 °C (light)
Acid flow	< 2 GPM
Cathode type	Cathode pipe + Donuts
EP rate	0.14 μm/min (bulk): 0.08 μm/min (light, cold)

Motivation of EP Study

- Recent result: A low-beta 5-cell 650 MHz cavity (B61C-EZ-103) quenched at ~17 MV/m after the surface treatment (bulk EP + post N-dope EP).
- The cavity surface was inspected with an optical camera to find any surface defect that caused quench at the low field.

Bulk EP (~150 µm at 18V, 22 °C) 10 µm at 18V, 12 °C N-doping + 7 µm EP at 18V, 12 °C

The surface appeared rough and etched like a BCP surface.

Replica Images and Surface Profile (Weld position)

Replica Images and Surface Profile (Near-weld position)

-19.904

400.000 500.000 600.000 700.000 800.000 900.000 1000.000 1100.000

I-V Curve (B61C-EZ-103)

Typical I-V curve (1.3 GHz 9-cell Cavity)

- The I-V curve was linear with no plateau region which is necessary for the EP process. The removal in linear region yields a rough surface.
- The linear I-V trend was observed for both LB650 and HB650 cavities under the standard EP parameters.

Lesson from EP Results of Samples and 1.3 GHz 9-Cell Cavity

- Cathode surface area:
- Cavity temperature:

Both affect the onset voltage for EP.

Improvement on Hardware

 The cathode surface area was enhanced by making the donut longer.

- A higher voltage power supply (30V x 210A) was used.
- Cavity cooling control was improved: 10 kW chiller was replaced with 15 kW.

I-V Curves with New Cathode (Cavity: B61C-EZ-104)

12 data points (12 sec) /volt, average of the last 4 points

No hysteresis in forward and reverse I-V curves: Suggests 12 seconds per volt was enough to make the chemistry stable on the surface.

Onset Voltage and Cavity Temperature

- The onset voltage increases linearly with the cavity temperature.
- To conduct bulk EP at a temperature of ~22 °C, a voltage higher than 20 V is required.

The standard 18 V is not enough to electropolish the equator surface.

Modified Conditions for EP

Standard and modified EP Parameters

Parameters	Standard Values	Modified Values
Voltage	18 V	23 V
Cavity temperature	22 °C (bulk), ~13 °C (light)	Target~22 °C
Acid flow	< 2 GPM	< 2 GPM
Cathode type	Cathode pipe + donuts	Cathode pipe + longer donuts

• The cavity B61C-EZ-104 was electropolished with the modified conditions.

Current and Temperature Profiles

- Current oscillations were seen with fresh acid and optimized EP conditions. No current oscillation was observed in the unoptimized-EP case.
- The cavity temperature was intentionally kept ~17 °C (lower than standard temperature for bulk EP) to maintain the current lower than 210 A (the rated current of the temporary power supply).

Surface after Optimized EP

Bulk EP (~140 μm at 18V, 22 °C + 10 μm at 18V, 12 °C) N-doping + 7 μm EP at 18V, 12 °C

Bulk EP (~120 µm at 23 V, 16–22 °C)

Surface is smooth like 1.3 GHz cavity surface, no pits on iris, mirror finish on beam tube

Motivation/Goal of HPR Study

- We are consistently observing field emission from 650 MHz cavities.
- The goal of this study is to understand the effect of HPR parameters on surface cleaning/removal of particles from the surface.
- Since 650 MHz cavities are larger in size and surface area than the
 1.3 GHz cavities, optimization of HPR parameters is necessary.
- HPR parameters includes
 - Type of nozzle
 - Nozzle-wall distance
 - Spray-wall angle
 - Operating pressure
 - Rinsing time

Finally decides static pressure on the rinsing wall

HPR Tool for 650 MHz Cavity at Fermilab

Initial Spray head w/ nozzles

This study is focused on solving field emission issue in 650 MHz cavities.

Initial Spray Head

1.3 GHz Cavity Spray head w/ big nozzles

HPR Parameters

Conditions	1.3 GHz	650 MHz (Current Conditions)
Spray angle (nozzle type)	40° (big type)	10° (small type)
Nozzle inclination angle*	0°	15°
Spray-head rotation	4 rpm	4 rpm
Cavity movement	5 mm/min	5 mm/min
Number of passes	5	3+5
Estimated Spray Force	~9 N @ 1250 PSI	~9 N @ 1250 PSI

Spray on 1.3 GHz Cavity

Spray on 650 MHz Cavity

Relation of Impact Force and Spray-Wall Angle

 F_{\perp} follows the sinusoidal relation with the spray-wall angle.

Calculated Pressure Profiles with Initial Spray-Head

Calculated Spray-Wall Angle and Rinsing Time

SEM Images of Rinsed Surfaces

Contaminated samples were rinsed at 10 and 20 cm distance from nozzle for 5 sec.

- The results suggest that a shallow spray-wall angle is not good for cleaning the surface.
- A larger nozzle-wall distance and small spray-wall angle reduce the impact force.

Optimized Angle of Nozzle Inclination

- When the nozzle inclination angle is changed, nozzle-wall distance changes. And accordingly, pressure changes on the cavity wall.
- The maximum pressure can be obtained at spray-wall angle of 45°.

Modified Spray Head

- The spray head was modified to increase the spray-wall angle and static pressure.
- Two nozzles were set with 0° inclination for cleaning of equator and iris.
- Other two nozzles were set at 40° inclination to clean the wall between iris and equator.

New spray head

22

Modified

200 60000 175 50000 150 125 (mm) 125 100 cell size (mm) Pressure (N/m2) 40000 30000 75 20000 50 10000 25 50 75 25 100 Cavity Lenght (mm)

Low β 650 MHz Cavity

Inclination angle: 0 and 40°

A cavity was successfully rinsed with the new spray head.

Summary

- Electropolishing parameters were studied and optimized for LB650 cavities.
- The polarization curves revealed the impact of cathode surface area, temperature, and voltage.
- The small cathode surface area (~5%) and the standard voltage (18 V) were not enough to perform EP of the equator surface of LB650 cavities.
- The modified EP conditions yielded a smooth surface of the LB650 cavity.
- HPR parameters were studied by carrying out HPR tests with contaminated samples.
- The spray-head was modified to improve the water jet pressure on the cavity wall.
- The spray-head was tested with the cavity B61C-EZ-103. No FE was
 observed up to the quench field (17 MV/m). More HPR tests on HB650
 cavities are necessary to understand the effect of the modified spray-head.

Effect of Rinsing Time

Four samples were rinsed with 40° nozzle at a nozzle-sample distance of 20 cm for different rinsing time.

- The number density of particles were similar regardless of the rinsing time.
- If the spray pressure is lower than the adhesive force between particles and the surface, a long rinsing time/number of rinsing passes will not solve field emission problem.
- A longer rinsing time may be effective when contaminants are water-soluble or move from the rinsing position to another position on the cavity.

Standard Hot EP

Standard Cold EP

Removal Profile

CFD Simulation

Big 40° nozzle

To be verified experimentally.

Target Wall

HPR Study on Sample

 Samples contaminated with TiO₂ powder were rinsed with 10° nozzle at different spray-wall angles.

Gauge for Force Measurement

Contaminated Surface

Samples were	cleaned	with	different	θ
and <i>d</i> .				

Nozzl e Type	Spray- Wall Angle (θ)	Nozzle- Sample Distance <i>d</i> (cm)	Pressur e (N/cm²)	Rinsing Time (s)
10° spray	90°	10	1.9	5
	45°		1.4	
	30°		0.95	
	15°		0.5	
	90°	20	1	
	45°		0.7	
	30°		0.5	

