

PIP-II Managing Technology Obsolescence -**RF Systems at FNAL**

Victor Grzelak PIP-II Technical Integration July 13th 2022

A Partnership of:

US/DOE

India/DAE

Italy/INFN

UK/UKRI-STFC

France/CEA, CNRS/IN2P3

Poland/WUST

RF Systems overview NuMI Main Injector (120 GeV) MTA **BNB** (8 GeV to 120 GeV) (400 MeV) (8 GeV) Linac Booster (750 keV to (400 MeV Pre-Accelerator 400 MeV) to 8 GeV) (750 keV) NTF Meson Muon MI-30 Line (66 MeV) Switchyard (120 GeV) Neutrino-Muon MI-8 Line Quantity **Amplifier Frequency** Power **RFQ** 201MHz 150KW **Tetrode Linac - DTL** 5 201MHz 5MW Triode Linac - SCL 8 805MHz **12MW Klystron Booster** 22 37-53MHz 150KW **Tetrode** Recycler -2.5 8 2.5MHz 8KW Solid State Recycler Recycler -(8 GeV) MI/RR **53** 3 53MHz 150KW **Tetrode Abort Main Injector** 20 52.8-53.1MHz 150KW **Tetrode**

Overview of PIP-II Linac

	Quantity	Frequency	Power	Amplifier
RFQ	2	162.5MHz	75KW	Solid State
HWR	8	162.5MHz	8kW	Solid State
SSR1	16	325MHz	8kW	Solid State
SSR2	35	325MHz	20KW	Solid State
LB650	36	650MHz	40KW	Solid State
HB650	24+12	650MHz	70KW	Solid State

Booster RF System

Injection Energy	$400\mathrm{MeV}$	
Extraction Energy	$8\mathrm{GeV}$	
Circumference	474.2 m	
Periods	24	
Lattice	FOFDOOD	
Revolution Period (at 400 MeV/8 GeV)	$2.2 \mu s / 1.6 \mu s$	
RF Stations	19	
RF Frequency	$37.77\mathrm{MHz}$ to $52.8\mathrm{MHz}$	
Harmonic Number	84	
RF Voltage Gain Per Turn	$920\mathrm{kV/turn}$	

Booster cavities in operation since start of lab

Booster RF System

Cavity – Ferrite loaded coaxial cavity

Ferrite Bias Supply – Precision tuning of cavity

Modulator – Programable RF envelope shaping

PA – RF Amplification

SSA – Drive signal amplification

Booster Upgrades

- 1. Solid State amplifier upgrade replaced tube drivers
 - Replaced cascode amplifiers (CW800F) with SSA greatly improving reliability
 - Reducing operating cost, transitioning away from tube amplifiers
- 2. Modulator HV MOSFET program upgrade replaced tube
 - Replaced Eimac CW800F tube, was replaced with High voltage FET
 - Removal of FET allowed for simplification of design
 - Reducing operating cost, transitioning away from tube amplifiers
- 3. LLRF fanout system upgraded from analog system to FPGA based system
 - Phase stability greatly increased, allowing for more accurate paraphrasing
- 4. Booster cavities operated in a 20+2 redundancy scheme
 - When a cavities' RF system went out of service, 2 viable spares were available minimizing downtime

Solid State Drivers

- 1. RF modules arranged in rack mountable "Slices"
 - Optimize architecture for upgradability
 - Each slice composed of 4 FETs
 - Optimize production from multiple vendors
 - Amplifier slices have been manufactured in house and through various vendors
 - Utilize rack mountable solution fits 19" relay rack
 - Standardize instrumentation for scalable solution.
- 2. DC power supplies
 - Utilize off the shelf components available from multiple vendors
- 3. Cabinet layout
 - Optimize cabinet layout to allow for upgradability and additional components

Solid State Drivers

- 1. Heatsink design
 - Optimized for surface area
 - Quality control process implemented to maintain proper thermal connections
- 2. Rack mount design allowed for implementation in numerous other locations
 - Booster Synchrotron (88 slices)
 - Booster 2nd harmonic (4 slices)
 - Main injector 53MHz system (160 slices)
 - Recycler 53MHz system (24 slices)
 - Recycler 2.5MHz System (36 slices)

Main Injector Cavity Design

- 1. Design of the cavity was built with upgradability in mind
 - Second amplifier could be installed to increase current capability
 - Prototype was installed in push-pull configuration (PIP-II Accelerator upgrade)
 - 3 years of operation allowing for proof of concept

Planning upgrades

- 1. Failure tracking
 - Serialize components
 - Log failures in database
 - Bi-annual review of largest issues
- 2. Annual technology obsolescence analysis
 - Review availability of parts list for each major system
 - Identify no-longer supported devices
 - As tubes become more obsolete, is moving to solid state an option?
- 3. Industry and lab communication
 - What is the availability of components needed?
 - Who else is driving the supply?
 - Fore example BNL, LANL, and FNAL used the 7835 Triode tube
 - Is there legacy technology involved?
 - Staggering procurements helpful?

Planning upgrades - Failure tracking

Design takeaways

- Each system and subsystem is designed modularly
 - Rack mountable designs Serviceable, maintainable and upgradable
 - Multiple source options for primary components Prevent sole source issues
 - 3. Precise specifications on the component level
 - Choose architecture with prospect of upgradability
- Prototyping and advanced testing
 - Implementing a new system into the machine is the best mechanism for proof of concept
 - "Beam is boss"
 - Early design flaw detection
- Vendor communication an industry collaboration
 - Communicate with industry and verify technology support
 - Communicate with other labs to learn their design insights
 - Prevent re-inventing the wheel when possible

Thank you for your attention!

