What is a Qubit?

Edison Murairi

1. Introduction:

- Classical bit
- Bit: Binary digit: \quad or 1
Yes or No; True or Pal\&
- Binary string: A collection of bits

2. Quantum Bit or Qubit

Objectives: Introduce Dirac notation and discuss the general quit state
Dirac Notation:

Dirac Notation

$\cdot\|\psi\rangle$,	$\|f\rangle,\|g\rangle$	bets
$\cdot\langle\psi\|,\langle f\| j\langle g\|$	Bra	

State $0 \quad$ can be denoted $|0\rangle$

$$
1
$$

$$
|1\rangle
$$

Definition
A quit is a state that is a superposition of two orthonormal rotate: $|0\rangle|\wedge\rangle$

- A quit : $|\psi\rangle$
- Superposition; Linear combination: Complex Vector space
- $|0\rangle$ and $|1\rangle$

$$
|\psi\rangle=\alpha|0\rangle+\beta|\Delta\rangle
$$

where α and β are complex numbers.

- Normalization: $|\alpha|^{2}+|\beta|^{2}=\Delta$

$$
|\alpha|^{2}=\alpha^{*} \alpha
$$

$|\alpha|$: Magnitude of α
Measurement

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- Probabilistic

$$
\begin{aligned}
& \operatorname{Prob}(|\psi\rangle \rightarrow|0\rangle)=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2} \\
& \operatorname{Pr}-b(|\psi\rangle-\lambda|1\rangle)=|\langle 1 \mid \psi\rangle|^{2}=|\beta|^{2}
\end{aligned}
$$

- Collapse
- Start with a state $|\psi\rangle$
. Make a measurement and you find on outcome

$$
|\theta\rangle
$$

- The state stays at the outcome $|\theta\rangle$

Activity - Classify Candidate States as Valid or Invalid

Candidate

Valid (V) or Invalid (I)

$$
\begin{aligned}
& \left.\left|\Psi>=\frac{1}{2}\right| 0\right\rangle+\frac{1}{2}|1\rangle \\
& \left.\left|\Psi>=\frac{1}{\sqrt{2}}\right| 0\right\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& \left.\left|\Psi>=\frac{1}{\sqrt{2}}\right| 0\right\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

$$
V
$$

$$
\left.\left|\Psi>=\frac{1}{\sqrt{10}}\right| 0\right\rangle+\frac{3}{\sqrt{10}}|1\rangle
$$

v
$|\Psi>=\frac{1}{\sqrt{10}} \underbrace{\text { Tail }}>+\frac{3}{\sqrt{10}}| \underbrace{\text { Head }}$
V

2. Quantum Bit or Qubit

Objectives: Discuss normalization of the state and Measurement

Activity: Guided example - The Quantum Coin

Problem: The quantum state of a spinning coin can be written as a superposition of Head and Tail, using head as $\mid 1>$ and tail has $|0\rangle$. Suppose the state is

$$
\left\lvert\, \operatorname{coin}>=\frac{1}{\sqrt{2}}(|0>+| 1>)\right.
$$

- Upon measurement, what is the probability of getting head? What is the probability of getting head?
Question for you:
- Two measurements on the same coin are done consecutively. The first measurement yields Head. What is the probability the second measurement would yield tail.

$$
\begin{array}{ll}
|\psi\rangle=\alpha(\text { Head })+\beta \mid \text { tall }\rangle & P(H)=|\alpha|^{2} \\
& P(T)=|\beta|^{2}
\end{array}
$$

- Measurement : Outcome tread

$$
|\psi\rangle=\mid \text { Head }\rangle
$$

Probability: $\mid\left.\langle$ tail $\mid \psi\rangle\right|^{2}=\mid\langle\tan |\left|H_{\text {ed d }}\right|^{2}$

$$
=0
$$

[Activity: Solve the problem below about a weighted Quantum Coin

A weighted coin has twice the probability of landing on head then on tail. Write down quantum state of the coin.

Activity: Measuring a qubit - Answer questions about measurements

A qubit is prepared in an unknown state. It is measured with an outcome |0 >

Which of the following could be its initial state: $\left.\left|0>, \frac{1}{\sqrt{10}}\right| 0\right\rangle+\frac{3}{\sqrt{10}}|1\rangle$, $\frac{1}{\sqrt{2}}|0\rangle+\frac{3}{\sqrt{2}}|1\rangle$,
If you tried to measure the same qubit the second time, can you narrow down what the initial state was?
\square Another qubit is prepared in the same unknown state (the original one). It is measured in the state $\mid 1>$. What can you say about the unknown state?

3. Matrix/Vector Representation

Objective: Discuss the vector representation of a state

Vector Representation

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|\underline{1}\rangle \\
& \text { 2D space } \quad\binom{1}{0} \text { and }\binom{0}{1} \\
& |0\rangle \xrightarrow{\text { map }}\binom{1}{0} \\
& \underline{\Delta} \longrightarrow\binom{0}{1} \\
& |\psi\rangle=\alpha \underline{|0\rangle}+\beta|1\rangle \\
& =\alpha\binom{1}{0}+\beta\binom{0}{1} \\
& =\binom{\alpha}{\beta}
\end{aligned}
$$

- Change the state of a quart by Multiplying it with Matrices -
- Any Matrix? No
- Projections and Unitary Matrices

1) Projections: Measurement.

Unitary matrices:
Definition
A matrix U is unitary f its conjugate transpose (Hermitian conjugate) is its own inverse.

- Matrix
- Conjugate Transpor: U^{+}
(Hermitian conjugate)

$$
u=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- Transpose of U : U^{\top}

$$
u^{\top}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \leftarrow
$$

- Take the conjugate of every entry in

$$
u^{+}=\left(\begin{array}{ll}
a^{*} & c^{*} \\
b^{*} & d^{*}
\end{array}\right)
$$

$u^{+}=u^{-1}$ Then U is unitas.
Properties of Unitary Matrices

* They kep to Normalization
start $\quad\left|\psi_{1}\right\rangle \quad$ you know $\left\langle\psi_{1} \mid \psi_{1}\right\rangle=1$

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =U\left|\psi_{1}\right\rangle \quad\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1 \\
* \operatorname{Det}(u) & =\underbrace{i \varphi} \Rightarrow|\operatorname{Det}(u)|=1 \\
U & =\left(\begin{array}{ll}
a \\
a & b \\
c
\end{array}\right) \\
\operatorname{det}(u) & =a d-c b \\
|\operatorname{det}(u)| & =1 \\
(X & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \begin{aligned}
\operatorname{det}(x) & =0 \times 0-1 \times 1 \\
L & =-1
\end{aligned} \\
& =e^{1 \pi} \\
\operatorname{det}(x) & =1-1 \mid \\
& =1
\end{aligned}
$$

* They always have an inverse.

4. Action on a Qubit State

Discuss evolving the state of a qubit through unitary operations.

Practice - Take Conjugate the Transpose of the following Matrices

- $M=\left(\begin{array}{cc}1+i & 0 \\ 0 & 1-i\end{array}\right)$
- $Y=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
- $V=\left(\begin{array}{cc}i & 2 i+5 \\ 3 i & -i\end{array}\right)$

Activity: Classify each candidate action on a $\begin{aligned} & \text { quit as Valid or Invalid } \\ & H^{2}=H H=H(H)=11 \\ & H^{+}=H_{n i t a n y} H^{-1}=\left(H^{\top}\right)^{*} \\ &=\left(H^{*}\right)^{\top}\end{aligned}$

Physical Realization: What is a Qubit Made out of?

- 1. Spin Qubit:

We can use the spin of an atom/electron/nucleus to as a qubit.

Example:
Spin up $=\mid 0>$ and Spin down $=\mid 1>$

Physical Realization: What is a Qubit Made out of?

2. Trapped Atoms and Ions:

We can use the energy levels in atoms/ions to make a qubit

Example:
Lowest energy $=\mid 0>$ and First excited energy $=\mid 1>$

Physical Realization: What is a Qubit Made out of?

3. Photon: Polarization Qubit

- The polarization is the direction of the Electric Field.
- It turns out that if you know the direction of the photon, the polarization has two possibilities: Horizontal and vertical.
- So, we can make a qubit with superposition of polarization.
Example:
Vertical $=\mid 0>$ and Horizontal $=\mid 1>$

Physical Realization: What is a Qubit Made out of?

Other types of Photon qubits

Physical Realization: What is a Qubit Made out of?

3. Superconducting Qubit

- We can design an electrical circuit so that the current flow in a superconductor has two possibilities - Clockwise and anti-clockwise.
- So, we can make a qubit of superposition of these states

Example:
Clockwise $=\mid 0>$ and Anti-clockwise $=\mid 1>$

Physical Realization: What is a Qubit Made out of?

Company	Qubit Type	Number of Qubits
Google	Superconducting	Sycamore: 54 qubits
IBM	Superconducting	Eagle: 127 qubits Osprey: 423 qubits (release schedule 2022)
Xanadu	Photonics	216 qubits
Microsoft	Topological	
lonq	Trapped ions	$100+$ qubits

Summary

* We use Dirac - Notation (Bra - Ket) to specify quantum states
* A qubit state is given by a superposition of states $\mid 0>$ and |1>
* Then, a general qubit state is $|\Psi>=\alpha| 0>+\beta \mid 1>$
α and β are complex numbers with $|\alpha|^{2}+|\beta|^{2}=1$
* It is convenient to use vector notation to represent a qubit state

THE END

