Straw tube mechanical behavior preliminary analysis.

Summary.

- Geometry and material considered.
- Pressure tube seamless with plugged ends.
- Pressure tube seamless opened.
- Pressure tube with seam with plugged ends.
- Pressure tube with seam open ends.
- Conclusions.

• Geometry and material considered.

	Straw tube an	alysis
Geometrical data		
Dis = 5 mm		internal straw diamters
$Ris = \frac{Dis}{2}$	Ris=2.5 mm	internal straw radius
$ths = 20 \cdot 10^{-3} \ mm$		Thickness straw tube
y≔4000 mm Material data Mylar		tube lenght

$Emm1 := 490 \frac{kgf}{mm^2}$	Emm1=4.805 GPa	Module dir. 1
$Emm2 := 510 \frac{kgf}{mm^2}$	Emm2=5.001 GPa	Module dir. 2
$\nu m = 0.38$	Poiss	on ratio Mylar

Material data Mylar Table 1 Typical Physical and Thermal Properties of Mylar® Polyester Film				
Property	Typical Value	Unit	Test Method	
Gauge and Type End Use	92A Industrial			
Ultimate Tensile Strength, MD TD	20 (29) 24 (34)	kg/mm² (kpsi)	ASTM D 882	
Strength at 5% Elongation (F-5), MD TD	10 (15) 10 (14)	kg/mm² (kpsi)	ASTM D 882	
Modulus, MD TD	490 (710) 510 (740)	kg/mm² (kpsi)	ASTM D 882	
Elongation, MD TD	116 91	%	ASTM D 882	
Surface Roughness Ra	38	nm	Optical profilomete	
Density	1.390	g/cm³	ASTM D 1505	
Viscosity	0.56		ASTM D 2857	
Melt Point	254	°C	DSC*	
Dimensional Stability at 105°C (221°F), MD TD at 150°C (302°F), MD TD	0.6 0.9 1.8 1.1	%	DuPont test	
Specific Heat	0.28	cal/g/°C		
Coefficients of Thermal Expansion Thermal Conductivity (Mylar® 1000A)	1.7 × 10 ⁻⁵ 3.7 × 10 ⁻⁴	in/in/°C <u>cal-cm</u> cm²-sec-°C	ASTM D 696 30-50°C (86-122°F) 25-75°C (77-167°F)	
UL94 Flame Class	See UL file # E93687	VTM		

*Differential Scanning Calorimeter

Tube seamless with plugged ends with 2 bar pressure.

 $\sigma id_v m = \sqrt[2]{\sigma 1i^2 - \sigma 1i \cdot \sigma 2i + \sigma 2i^2}$

 $\sigma id_vm = 21.651 \ MPa$

Tube seamless with plugged ends with 2 bar pressure Fem analyses.

FEM Longitudinal disp. 2.417mm analytical 2.497mm stress vm ana 21.6 Mpa FEM 21 Mpa

FEM radial disp. 11 μ m analytical μ m 10.535 μ m.

Experimental result longitudinal disp. Per meter 0.7mm

For 4 meter 4x0.7mm 2.8 mm the relative error very small

Comparison disp. with force:

Analytical with no metal 1 meter 300 gr 1.949mm experimental 1.7mm

Pressure tube seamless opened with 2 bar.

The maylar tube will shrink of 7 mm when is free ends.

If the ends are constrain and their not a pulling force can collapse.

Pressure tube seamless opened with 2 bar.

The maylar tube will shrink of 7 mm when is free ends.

If the ends are constrain and their not a pulling force can collapse.

Pressure tube seamless opened with 2 bar end restrained.

Pi=2 bar	initial pressure
$Po \coloneqq 1 \ bar$	operatin pressure
$\varepsilon 2i \coloneqq \frac{Pi \cdot Ris}{Emm1 \cdot ths} \cdot (0.5 - \nu m)$	$\varepsilon 2i = 6.243 \cdot 10^{-4}$
$\varepsilon op := -\nu m \cdot \frac{Po \cdot Ris}{Emm1 \cdot ths}$	$\varepsilon op = -9.885 \cdot 10^{-4}$
$\varepsilon axial \coloneqq \varepsilon 2i + \varepsilon op$	
$\varepsilon axial = -3.642 \cdot 10^{-4}$	residual strain
$\sigma res \coloneqq arepsilon axial \cdot Emm1$	residual stress
$\sigma res = -1.75 \; MPa$	Very small

Considering infinite rigid frame. A pressurized tube is Glued With 2 bar of internal pressure. It is stretch from the pressure. His strain is given by the pressure of 2 bar considering that this is maintained.

Now if we applied 1 bar of pressure the we have to superimpose the shrinkage due to the pressure.

In this particular case the final strain is negative. Mean that the straw have axially a compressive load.

Pressure tube with seam with plugged ends.

Straw total length 4 meter

If the two end are restrained the displacement is 14 μ m if only one end is held the total displacement is 70mm. In the two restrained ends I have to verify the reaction on the restrain ends.

Straw with both ends plugged with two ends held.

Straw with both ends plugged with one end held.

F. Raffaelli 8

Straw total length 4 meter

If the two end are restrained the displacement is 14 μm if only one end is held the total displacement is 70mm.

Straw with both ends plugged with two ends held.

Straw with both ends plugged with one end held.

Conclusions.

- Preliminary analytical and fem calculations look very promising to predict the tube mechanical behavior.
- Further analyses need to be done to define the best strategy to guarantee the mechanical stability under the operation conditions.
- Further analysis will be done including the metallization.

9/21/22 F. Raffaelli 10

Longitudinal tensile tests

Specimen tests example on scraps:

Noise due to pen marks

Loose of marks

Perfect fit of the videoextensometer and the crosshead travel