

131.ND.02 ND-LAr Physics and Design

Andrew Mastbaum and Pedro Ochoa-Ricoux, ND-LAr Analysis Coordinators ND-LAr Preliminary Design Review 27 June 2022

Who we are:

- Andrew Mastbaum:
 - Assistant Professor, Department of Physics and Astronomy, Rutgers University
 - Background in accelerator neutrinos (SBND, MicroBooNE, DUNE, ANNIE), neutrino astrophysics and neutrinoless double-beta decay (SNO, SNO+, Theia)
 - Analysis Tools & Techniques co-coordinator in MicroBooNE
- Pedro Ochoa-Ricoux:
 - Associate Professor of Physics, University of California, Irvine
 - Background in reactor (Daya Bay, JUNO) and accelerator (MINOS, DUNE) neutrino experiments, as well as in collider experiments (ATLAS) and R&D (LiquidO).
 - Analysis co-coordinator/convener in Daya Bay and JUNO

Outline

- DUNE Physics and ND-LAr Requirements
- Recommendations from Previous Reviews
- Status of Simulation & Analysis tools
- Pathway to FDR
- Summary

The ND's role in DUNE's oscillation measurements

DUNE is a **precision** neutrino oscillation experiment

Main strategy: compare FD data to unoscillated prediction and determine what parameters best describe the difference

Challenge: large uncertainties in flux, interaction, and detector models

FD Prediction

Requirement #1: same target as the FD

Large uncertainties introduced by extrapolating from a different target

Can be estimated by comparing the cross-section of argon to carbon between different event generators

Significant degradation in the physics reach

Technical requirement: **ND-01** (transfer measurements to FD)

Requirement #2: same response function as the FD

Spectral information essential to DUNE's oscillation goals

A neutrino interaction reconstructed with X GeV in the FD must be reconstructed with the same X GeV in the ND

Strategy:

- Muons: measure them in TMS with same resolution as range in FD
- Hadronic showers: fully contain them and measure energy via calorimetry in LAr, as in FD

Technical requirement: **ND-01** (transfer measurements to FD)

NMO significance with single-bin counting experiment significantly reduced compared to full spectral measurement with full systematics

Requirement #2: same response function as the FD

 $3.0 < E_{\nu} < 3.5, 0.2 < 1-y < 0.3$

Consequence: ND-LAr must be large enough

Active volume dimensions determined using simulated events in LAr to ensure containment of hadronic system

But also:

- Need active veto around the detector: using LAr itself is the simplest and most reliable option
- Need containment of muons at high angles (or side spectrometers, which is unfeasible)

Conclusion: $7 \times 5 \times 3 \text{ m}^3$

Technical requirements: **SYS-001, SYS-002** (fiducial mass and active size)

4m wide x 3m tall

Requirement #3: pixelated charge readout

ND-LAr also faces a unique challenge: each 1.2 MW beam spill results in ~55 interactions

Example of simulated 10 µs spill in ND-LAr

Beam (1.2 MW)

Technical requirement: **ND- 06** (operation in high-rate environment)

Requirement #3: pixelated charge readout

Large event pile-up exacerbates ambiguities in projective wire readout

Case in point: SBND detector running PANDORA reconstruction with simulated single ν 's vs. 1.2 MW LBNF beam spills:

- Sharp drop in efficiency
- Significant contamination from other interactions

Conclusion: need pixelated charge readout for **real 3D reconstruction**

Technical requirements: **SYS-003**, **SYS-004** (pile-up rejection and 3D charge)

Requirement #4: modularization

In a LArTPC, charge readout provides topological information and light readout provides timing

Challenges for a monolithic ND-LAr:

- Combinatorics: impossible to match O(50) light signals to O(50) charge deposits
- Cannot separate all light signals

Study with simple reconstruction and lightcharge matching shows clear degradation in energy reconstruction with decreasing modularity

Other advantages of modularization: simplification of construction and testing, reduced cathode voltage

Technical requirement: **SYS-005** (charge-light matching)

Flash Spectrum

Establishment of Requirements

- High-level requirements:
 - Well understood!

 ✓
 - Everything from previous slides: LArTPC, size, pile-up tolerant... etc.
 - Fix the conceptual design of the detector
- Low-level requirements:
 - In progress ?
 - Examples: dead volume that can be tolerated, failure of electronics channels vs. time, ... etc.
 - Requires a more detailed simulation and reconstruction
 - Have a clear path for addressing these (rest of this talk)

Recommendations from past reviews

- Relevant recommendations have centered on:
 - Simulation and Analysis
 - Developing a complete end-to-end ND-LAr simulation and reconstruction workflow
 - Integrating simulated/reconstructed event samples into DUNE oscillation analysis
 - Analysis supporting ND-LAr design and subsystems
 - Requirements regarding detector size, geometry, and modularity
 - Subsystem design: E.g. maximum tolerable E field nonuniformity, inactive materials, ...
- To address these recommendations and support design validation and DUNE physics, we have undertaken to:
 - Develop a detailed microphysical detector simulation
 - Deploy two complementary advanced event reconstruction paradigms
 - Benchmark and tune our simulation using mid-scale prototype detector data
 - Engage deeply with DUNE Physics efforts toward an enhanced sensitivity analysis employing fully simulated and reconstructed Near Detector event samples and a highly detailed model of systematic uncertainties

Simulation and Analysis Tools

- Study prototype data and provide actionable feedback for detector design considerations. Assess whether the prototype data indicates we are on a path to meet ND-LAr performance requirements.
- Perform ND-LAr simulations to support broader DUNE physics analysis efforts, including demonstrating ND deliverables with a realistic simulation. Incorporate an up-to-date understanding of detector design and performance, and automated reconstruction.

Simulation and Analysis Tools: Detector Simulation

- Detailed microphysical ND-LAr and prototype geometry
- Cryostat features e.g.
 composite window and scintillator panels
- Realistic material budget and inactive regions

- Advanced charge and light response simulation developed for pixel-based LArTPCs (github)
- 10,000× acceleration with GPUs
- Outputs in LArPix data format

- Simulations of Module-N and 2×2 prototypes
- Module-0/1 data/MC comparisons used to tune & improve MC modeling

Simulation and Analysis Tools: Reconstruction

Two advanced reconstruction paradigms:

Machine-Learning Based Reconstruction

- Multi-algorithm deep-learning assisted full event reconstruction (github)
- Successfully deployed in the MicroBooNE, SBN, ICARUS, and ProtoDUNE wire-based LArTPCs
- Already working with ND-LAr's native 3D readout and outputting into common analysis files (CAFs)

arxiv:2102.01033 arxiv:2007.03083 PRD 104, 072004 (2021) PRD 104, 032004 (2021) EPJC 75:9, 439 (2015), EPJC 78:1, 82 (2018)

Pandora

- Highly customizable particle-flow based event reconstruction (github)
- Used in DUNE FD, MicroBooNE, SBN, ProtoDUNE, etc.
- Currently working in 2D projections to leverage existing toolchain, 3D algorithms coming soon

Simulation and Analysis Tools: Prototype Data Analysis

Module-0 Prototype Analysis

Article under review (EDMS 2746204)

Imaged cosmic rays from Module-1 prototype data February 2022

- ND-LAr and prototypes use a common simulation & analysis infrastructure
- Prototype data analysis is addressing key design requirements
- Prototype data to simulation comparisons already used to enhance and tune detector modeling
 - Automatically feeds into ND-LAr simulation
- Complete detector simulation
 & reconstruction supports
 detailed design maturation and
 a new generation of DUNE
 physics analysis

Pathway to the FDR

- Finalize the complete "end to end" simulation and analysis chain
 - Tuning and optimization of reconstruction algorithms using novel 3D readout and rich optical detection information from hybrid high-coverage light system
- Support the 2×2 Demonstrator analysis
 - Excellent opportunity to exercise the full system including reconstruction of GeV-scale neutrino interactions in a multi-module environment with matching to an external tracker
- Support subsystem requirement validation
 - Leverage our detailed, increasingly data-driven microphysical simulation to extrapolate prototype performance to ND-LAr, validate design and retire design risks
- Integrate fully simulated and reconstructed samples into DUNE oscillation analysis
 - Support a next generation of DUNE sensitivity studies with a much more complete and sophisticated model of the DUNE ND complex
 - Our group is strongly engaged with this collaboration effort, including a detailed reassessment of key systematic uncertainties
- Support analysis with prototypes
 - 2x2 and FSD

18

Summary

- ND-LAr is essential to DUNE's oscillation physics program
- ND-LAr is only option on the table that meets the high-level requirements:
 - LArTPC
 - Same response as FD
 - Pile-up resistant
- Significant progress towards full end-to-end simulation and reconstruction building on shared ND efforts and tools
 - Synergy with prototyping effort
 - Provides a path to addressing low-level requirements

Backup Slides

Scope of ND-LAr Analysis Group

Support broader DUNE physics analysis efforts, including demonstrating ND deliverables

Develop an automated reconstruction that reliably and optimally extracts information from ND-LAr interactions

Incorporate up-to-date understanding of detector design & performance

Provide actionable feedback for detector design considerations

Assess whether we are on a path to meet ND-LAr performance requirements

