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Who we are:

« Andrew Mastbaum:
Assistant Professor, Department of Physics and Astronomy, Rutgers University
Background in accelerator neutrinos (SBND, MicroBooNE, DUNE, ANNIE), neutrino
astrophysics and neutrinoless double-beta decay (SNO, SNO+, Theia)
Analysis Tools & Techniques co-coordinator in MicroBooNE

* Pedro Ochoa-Ricoux:
Associate Professor of Physics, University of California, Irvine
Background in reactor (Daya Bay, JUNO) and accelerator (MINOS, DUNE) neutrino
experiments, as well as in collider experiments (ATLAS) and R&D (LiquidO).
Analysis co-coordinator/convener in Daya Bay and JUNO
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Outline

« DUNE Physics and ND-LAr Requirements

Recommendations from Previous Reviews

Status of Simulation & Analysis tools
Pathway to FDR

Summary
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The ND’s role in DUNE’s oscillation measurements
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FD Data

DUNE is a precision neutrino oscillation experiment

Main strategy: compare FD data to unoscillated
prediction and determine what parameters best
describe the difference

Challenge: large uncertainties in flux, interaction, and
detector models
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Technical requirements: ND-00

The ND’s role in DUNE’s oscillation measurements (predict FD spectrum), ND-01,
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The ND has an essential role: constrain uncertainties in
FD prediction by measuring the same (flux X
interaction X detector model)
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Requirement #1: same target as the FD

Large uncertainties introduced by
extrapolating from a different target

Can be estimated by

comparing the cross-

section of argon to carbor g
between different event
generators

Significant

v

degradation in
the physics reach
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Truth: NO 5_/x =0.50 sin’,, =0.50

Requirement #2: same response function as the FD % CF - swerm oy
g
Spectral information essential to NIMO significance with s P
e Sk . 5 o
DUNE'’s oscillation goals single-bin counting -
experiment significantly o af
reduced compared to full =& 4F
A neutrino interaction reconstructed S‘?t‘fff”";‘l'smgf‘suret.me”t of
. , with fu ematics :
with X GeV in the FD must be g . h e
reconstructed with the same X GeV in e T e YR
the ND Exposure (years)

Example FD event:
Strategy: 0.7 GeV muon + 2.05 GeV

' hadrons (roughly 1.4 x 1.9 m
in this projection)

- Muons: measure them in TMS with
same resolution as range in FD

- Hadronic showers: fully contain them
and measure energy via calorimetry in
LAF, as in FD Haidronic shower:

Mix of particles unknown
and highly uncertain

Technical requirement: ND-01 Energy & angle highly
(transfer measurements to FD) - uncertain

640
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Technical requirements: SYS-001, SYS-002
(fiducial mass and active size)

Requirement #2: same response function as the FD

3.0<E <35,02<1-y<03 4m wide x 3m tall
o 1.04r
Consequence: ND-LAr must be g 4 Lagf S omens — 4o0emong — s cmlong
> > [ — cmlong — cm long
large enough z L :
Pl ¢ -
Active volume dimensions g %

: . : 0.96}
determined using simulated events :

iNn LAr to ensure containment of

0.94f

0.92F
hadronic system 0of
But also: o 0,88 g o
z{cm Neutrino energy (GeV)
- Need active veto around the _
detector: using LAr itself is the ' arvosta: g . v, CC lepton
simplest and most reliable option Active LAT g » oscillated energy
- Need containment of muons at i S Yone g w and angle
high angles (or side spectrometers, - e %
- . : S 40
which is unfeasible) =
Conclusion: 7 X5 X 3 m3 20
10
0 0
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Requirement #3: pixelated charge readout

ND-LAr also faces a unique challenge: each 1.2 MW beam spill results in ~55 interactions

Technical requirement: ND-
06 (operation in high-rate
environment)
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Requirement #3: pixelated charge readout Actual charge distribution

Large event pile-up exacerbates ambiguities

in projective wire readout

Case in point: SBND detector

running PANDORA reconstruction
with simulated single v’'s vs. 1.2

MW LBNF beam spills:

- Sharp drop in efficiency
- Significant contamination
from other interactions

Conclusion: need pixelated charge

readout for real 3D
reconstruction

Efficiency (no units)

Technical requirements: SYS-003, SYS-004

(pile-up rejection and 3D charge)
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Flash Spectrum

FV interactions in color
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Requirement #4: modularization

In a LArTPC, charge readout provides

-
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Establishment of Requirements

- High-level requirements:

- Well understood! &/
- Everything from previous slides: LArTPC, size, pile-up tolerant... etc.

- Fix the conceptual design of the detector
- Low-level requirements:
- In progress
- Examples: dead volume that can be tolerated, failure of electronics channels vs.
time, ... etc.
- Requires a more detailed simulation and reconstruction

- Have a clear path for addressing these (rest of this talk)
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Recommendations from past reviews

- Relevant recommendations have centered on:

- Simulation and Analysis
Developing a complete end-to-end ND-LAr simulation and reconstruction workflow
Integrating simulated/reconstructed event samples into DUNE oscillation analysis
- Analysis supporting ND-LAr design and subsystems
Requirements regarding detector size, geometry, and modularity
Subsystem design: E.g. maximum tolerable E field nonuniformity, inactive materials, ...

- To address these recommendations and support design validation and DUNE physics,

we have undertaken to:
- Develop a detailed microphysical detector simulation
- Deploy two complementary advanced event reconstruction paradigms
- Benchmark and tune our simulation using mid-scale prototype detector data
- Engage deeply with DUNE Physics efforts toward an enhanced sensitivity analysis employing
fully simulated and reconstructed Near Detector event samples and a highly detailed model

of systematic uncertainties
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Simulation and Analysis Tools

- Study prototype data and provide actionable feedback for detector design considerations. Assess
whether the prototype data indicates we are on a path to meet ND-LAr performance requirements.

- Perform ND-LAr simulations to support broader DUNE physics analysis efforts, including
demonstrating ND deliverables with a realistic simulation. Incorporate an up-to-date understanding of
detector design and performance, and automated reconstruction.

tﬁlagg 1: CAF Pseudo-
eco analysm {ND CDR)

Stage 2: edep-sim
to reco

~
Generation Geant4 -
GENIE, etc. edep-sim ML Reco Analysis )
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ND-LAr-specific detector simulation Advanced LArTPC (@ Reconstruction
reconstruction tools

J >

Stage 3: full chain (almost ready)
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Simulation and Analysis Tools: Detector Simulation

/ |

LArTPCs (github)
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- 10,000x acceleration with GPUs
- Qutputs in LArPix data format

- Advanced charge and light response
simulation developed for pixel-based
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Simulations of Module-N and
2x2 prototypes

Module-0/1 data/MC
comparisons used to tune &
improve MC modeling
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https://github.com/DUNE/larnd-sim

Simulation and Analysis Tools: Reconstruction

Two advanced reconstruction paradigms:

~ Interaction” ¥
_clustering

- Highly customizable particle-flow based

- Multi-algorithm deep-learning assisted full event event reconstruction (github)
reconstruction (glthub)_ _ - Used in DUNE FD, MicroBooNE, SBN,

- Successfully deployed in the MicroBooNE, SBN, ProtoDUNE. etc.
ICARUS, and ProtoDUNE wire-based LArTPCs - Currently vv(;rking in 2D projections to

- Already working with ND-LAr’s native 3D readout leverage existing toolchain, 3D algorithms
and outputting into common analysis files (CAFs) coming soon
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https://github.com/DeepLearnPhysics/lartpc_mlreco3d
https://github.com/PandoraPFA
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Simulation and Analysis Tools: Prototype Data Analysis

Article under review
(EDMS 2746204)
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Imaged cosmic rays from
Module-1 prototype data
February 2022

ND-LAr and prototypes use a
common simulation & analysis
infrastructure
Prototype data analysis is
addressing key design
requirements
Prototype data to simulation
comparisons already used to
enhance and tune detector
modeling

o Automatically feeds into

ND-LAr simulation

Complete detector simulation
& reconstruction supports
detailed design maturation and
a new generation of DUNE
physics analysis
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https://edms.cern.ch/document/2746204

Pathway to the FDR

Finalize the complete “end to end” simulation and analysis chain
- Tuning and optimization of reconstruction algorithms using novel 3D readout and rich optical detection
information from hybrid high-coverage light system

Support the 2x2 Demonstrator analysis
- Excellent opportunity to exercise the full system including reconstruction of GeV-scale neutrino
interactions in a multi-module environment with matching to an external tracker
Support subsystem requirement validation
- Leverage our detailed, increasingly data-driven microphysical simulation to extrapolate prototype
performance to ND-LAr, validate design and retire design risks
Integrate fully simulated and reconstructed samples into DUNE oscillation analysis
- Support a next generation of DUNE sensitivity studies with a much more complete and sophisticated
model of the DUNE ND complex
- Our group is strongly engaged with this collaboration effort, including a detailed reassessment of key
systematic uncertainties
Support analysis with prototypes
- 2x2 and FSD
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Summary

« ND-LAr is essential to DUNE’s oscillation physics program
« ND-LAr is only option on the table that meets the high-level requirements:
LArTPC
Same response as FD
Pile-up resistant
« Significant progress towards full end-to-end simulation and reconstruction building on
shared ND efforts and tools
Synergy with prototyping effort
Provides a path to addressing low-level requirements
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Backup Slides
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Scope of ND-LAr Analysis Group

Support broader DUNE physics Provide actionable
analysis efforts, including feedback for detector
demonstrating ND deliverables design considerations

Assess whether we are
on a path to meet ND-
LAr performance
requirements

Develop an automated
reconstruction that reliably and
optimally extracts information from
ND-LAr interactions

Incorporate up-to-date
understanding of detector design
& performance
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