High Voltage Distribution: Design and Performance

Saba Parsa, L3 HV Subsystem Lead ND-LAr Preliminary Design Review 28 June 2022

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Who am I (or We with subsystem lead and engineer)

- Saba Parsa
 - Postdoc at University of Bern since April 2021

Outline

- Key Documents (table)
- Design elements & status / CAD model
- Key Analyses / Performance Assessment
- EH&S / Codes & Standards
- Summary

Key Documents

HV Documentation	Description	EDMS links
High Voltage folder	Top level folder for High Voltage documentation	https://edms.cern.ch/project/CERN-0000217526
Requirements	Spreadsheet with all ND-LAr requirements, see sheet "High Voltage"	https://edms.cern.ch/document/2589287
Interface	Interface control documents (ICDs) internal to the ND-LAr Consortium	https://edms.cern.ch/project/CERN-0000223195
Analyses	HV distribution system technical description	https://edms.cern.ch/document/2588658
Procurement Plan	Subsystem Procurement plan	https://edms.cern.ch/document/2611199
Manufacturing Plan	Subsystem Manufacturing plan	https://edms.cern.ch/document/2611198
QAQC Plan	Subsystem QAQC plan with focus on high-level QAQC test plans	https://edms.cern.ch/document/2611197
Previous Review Tracking	Spreadsheet with previous review recommendations, see "High Voltage"	https://edms.cern.ch/document/2741842
Cost	High-level cost estimate for ND-LAr and subsystems	https://edms.cern.ch/document/2742778
Schedule	High-level "one-pager" schedule for ND-LAr Consortium activities	https://edms.cern.ch/document/2603073
Mechanical Component Drawings	Subsystem mechanical component drawings	https://edms.cern.ch/project/CERN-0000220720
Mechanical Assembly Drawings	Subsystem assembly drawing	https://edms.cern.ch/document/2747038
Electrical Schematics and Board Layouts	Subsystem electrical schematics and board layouts	https://edms.cern.ch/project/CERN-0000223249

Design Elements & CAD Model

HV Distribution Subsystem CAD model

HV cables Arriving on top of the modules See Field Structure Subsystem

Design Elements - Overview

ltem	Rated Voltage	Rated Current	Impedance	Expected Nominal Voltage/Current
HV PS (Spellman eSL50x300)	50 kV	6 mA	-	
HV Cables (hivolt.de)	100 kV	-	61 Ω	25 W/ 2.5 mA
HV Connectors (HC7-50A)	75 kV	30 A	-	25 KV , 2.5 MA
HV Filter (PFD-5)	50 kV (input)	6 mA	-	

HV Power Supply

HV Connectors

HV Filter

Design Elements & CAD Model

Electrical schematic of PFD-5

Electrical Analysis, Performance Assessment

HV-002 requirement

Variation of HV shall be 0.1% at f<1Hz

@ 15 kV: Example peak to peak variation <5V or 0.03%, well below 0.1% of required.

@ 15 kV: Fluctuations on output channels (10 min σ): ~ 2 V Data from Module-1 run, February 2022

Electrical Analysis, Performance Assessment

HV-003 & HV-004 requirement

Variation of HV shall be < 4mV (1Hz< f <100 Hz)

https://edms.cern.ch/document/2588658

- Spellman ripple voltage < 14V p-p at nominal 32 kV (25 kV at the PFD-5 output)
- At 25 kHz of conversion frequency the filter rejection ratio is approximately -72dB
- -> Resulting residual ripple pf <3.5 mV p-p
- During 2x2 Module-1 run, no regular noise was observed on the charge data as a function of HV.

BodeDiagram

Thermal Analysis

https://edms.cern.ch/document/2588658

Oil data sheet: https://edms.cern.ch/document/2588690

- Resistors in the circuit of the PFD-5 dissipate heat
- The heat is transferred by the Nytro 10 XN transformer oil within a cylindrical aluminum pot 26 cm in diameter, 41 cm high, to the outer wall and is dissipated to the atmosphere.
- 2x2 Module-0 run measurement of equilibrium temperature as a function of dissipated power in PFD-4 prototype (below)

25.000	35.000
51.250	39.406
30.854	45.658
2.439	4.441
12.195	31.0886
14.277	47.332
	25.000 51.250 30.854 2.439 12.195 14.277

 Expected oil temperature of PFD-5 with 5 modules operational is ~45 °C, well below 140°C of the oil flash point

ESH Codes and Standards

- Adheres to all ESH codes/standards established by LBNF/DUNE Project plus home institutional ESH requirements
- All Near Site deliverables must satisfy FNAL FESHM requirements
 - 2x2 Program providing experience through ORC process
- Specifically, ND-LAr has completed an initial review of applicable areas of FESHM, found at <u>EDMS</u> <u>2602421</u>

Applicable topics for HV distribution subsystem:

FESHM 9100 - Fermilab Electrical Safety Program FINAL

FESHM 9150 - Requirements for Experimental and Accelerator High Voltage Utilization Equipment

FESHM 9190 - Grounding Requirements for Electrical Distribution and Utilization Equipment FINAL

FESHM 6020.5 Flammable and Combustible Liquids FINAL

 ND-LAr has also completed a Hazard Registry in coordination with the ND sub-project, found at EDMS 2663898

Summary

- The CAD model and associated design documentation is developed
- The analysis described in the slides supports the design of the HV distribution system in the context of fulfilling subsystem requirements for the ND-LAr detector and safe operation.
- HV distribution system is ready to move towards final design and production of Full-Scale Demonstrator prototype

Backups

Accidental rapid ramp down of HV during 2x2 Single module run

No damage to the charge/light readout electronics

-> Implementation of slow ramp up/down, limited to 1 kV/s

Data from Module-0 run, March 2021

Expected HV values

Based on 2x2 Single module operation

2x2 Module: squares per module	ND-Lar Module: squares per module	
0.041	0.031	

HV Measurement/Calculation for 2x2			
E drift, kV/cm	0.5	1.0	
Vcath, kV	15.100	30.200	
R module, MΩ	66.570	36.695	
l module, mA	0.227	0.823	
V_HVPS, kV	27.196	72.860	
I_HVPS, mA	0.907	3.292	
P per module, W	3.425	24.855	
P dissipated in filter, W	10.975	140.439	

DR8 surface resistance GΩ/sq			
at 0.5kV/cm	at 0.7kV/cm	at 1kV/cm	
1.64	1.261	0.904	

HV Calculations for NI	/ Calculations for ND-LAr one row				
E drift, kV/cm	0.5	0.7	1.0		
Vcath, kV	25.000	35.000	50.000		
R module, MΩ	51.250	39.406	28.250		
l module, mA	0.488	0.888	1.770		
V_HVPS, kV	30.854	45.658	71.239		
I_HVPS, mA	2.439	4.441	8.850		
P per module, W	12.195	31.086	88.496		
P dissipated in filter, W	14.277	47.332	187.955		