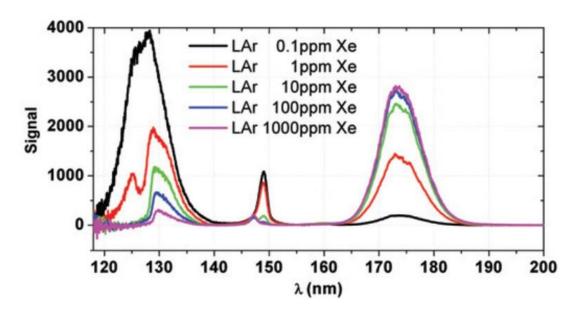
Update on the Xe-LAr simulation for GRAIN

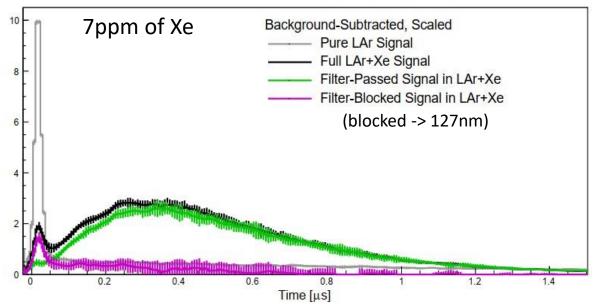
GRAIN WG simu-reco – 09/06/2022


M. Vicenzi

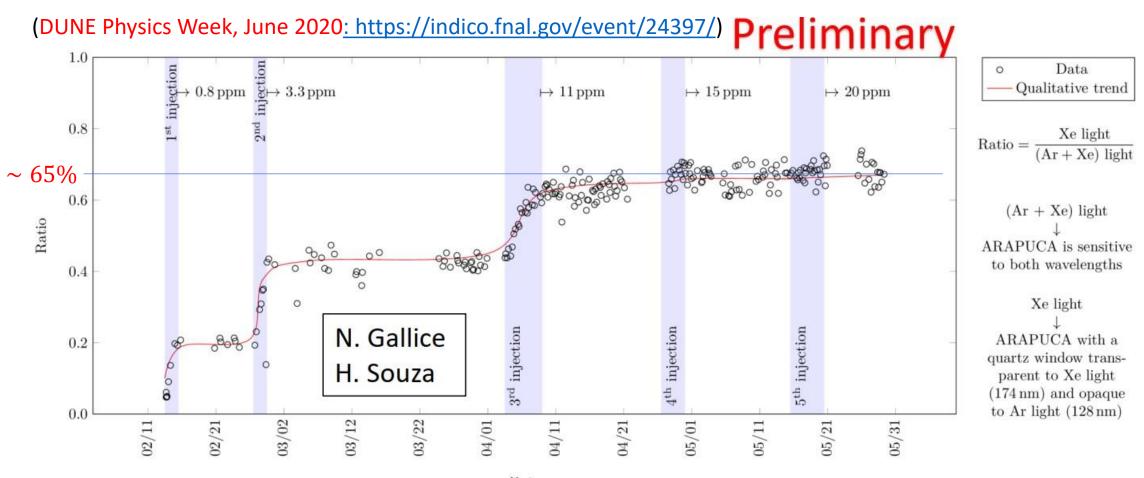
Review of known effects of Xe-doping

- Scintillation light is shifted to 174nm (affects only the SLOW component, fast remains at 127nm)
- Fast component is reduced (not shifted + partially absorbed by Xe)
- 3. Slow component is shortened (shifted to 174nm, τ_S is lower at increasing Xe concentrations)
- 4. Globally the total light yield increases

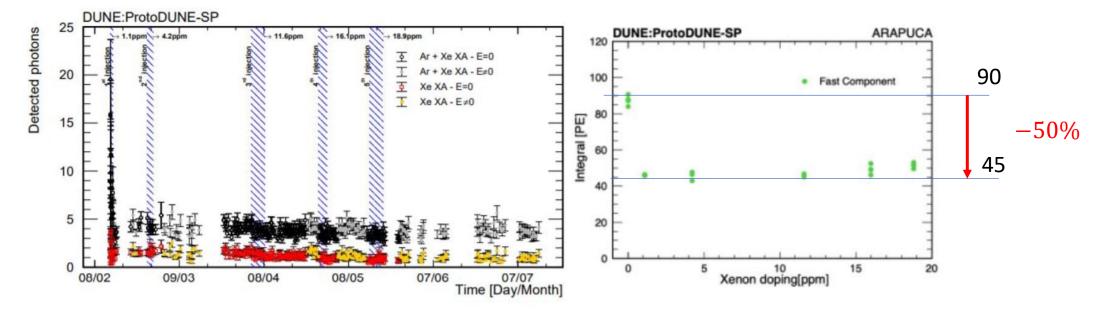
**Every source agrees on the general trends, but numbers vary a bit


1. Shift to 174nm

Note: The spectra were corrected applying the detector response function. However, below 140 nm the spectra are overestimated by a factor of approximately two due to a systematic error in the detector response in that wavelength region.

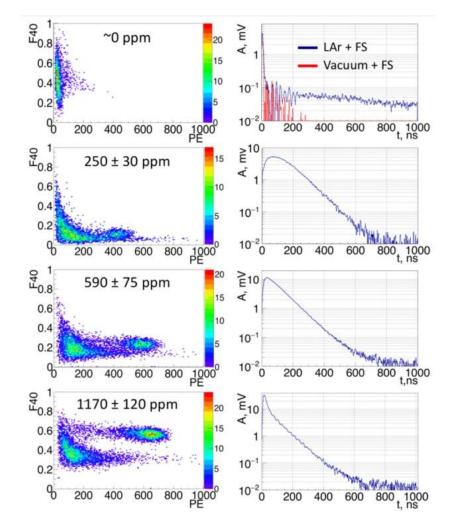

(A. Neumeier *et al* 2015 *EPL* **109** 12001) https://doi.org/10.1209/0295-5075/109/12001

(D. Whittington, DUNE-doc-11965)

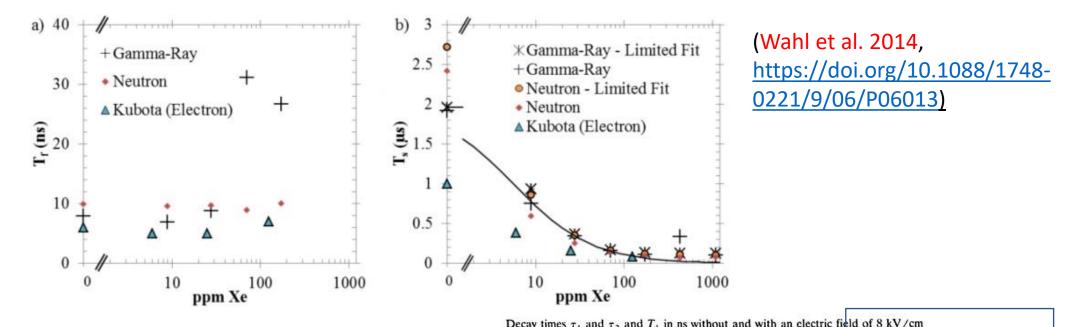

Light remaining at 127nm is the fast component only, Only the fast component is shifted to 174nm.

1. Transfer satures at 10ppm

(we can assume all Xe light here is SLOW component)


2. Fast component is reduced

- Light emitted in the singlet (fast) component decreases significantly, already with 1.1 ppm of Xe
- Measured by X-ARAPUCAs and ARAPUCAs, but also in ProtoDUNE-DP
- Possibly due to Xe atoms absorbing Ar singlet light, already documented in literature


L. Bomben, DUNE-CM May 2021 - https://indico.fnal.gov/event/46503/

2. Recovering the fast component

- Pulse-shape discrimination with 174nm light → shows that the fast component is recovered at 174nm for Xe > 1000ppm
- D. Akimov et al. (2019) <u>https://doi.org/10.1088/1748-</u> <u>0221/14/09/P09022</u>

3. Time constants

(Kubota et al. 1993, https://doi.org/10.1016/0168-9002(93)91413-H)

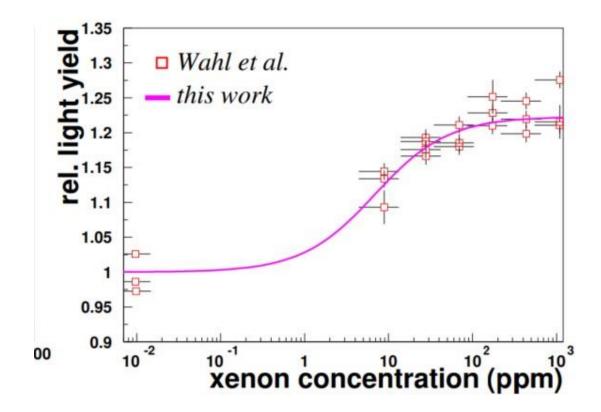
Liquid/solid	Exciton luminescence (with $E = 8 \text{kV/cm}$)			Total luminescence (without E)			reference
	$\overline{\tau_1}$	τ2	T _d	$\overline{\tau_1}$	τ2	T _d	22100044900023428999
Liquid		0					
Pure argon	5	900		6	1 000		de A
6 ppm Xe	4	350	200	5	380	200	а
25 ppm Xe	3	150	160	5	160	150	а
125 ppm Xe	4	70	45	7	85		а
2500 ppm Xe		70	-	12	90	-	а
19000 ppm Xe	8	80	-	12	90	-	a
Pure Xe	2	27	-				[2]
Solid							100578940
pure argon				5	1100	0.00	а
6 ppm xenon					1100	-	а

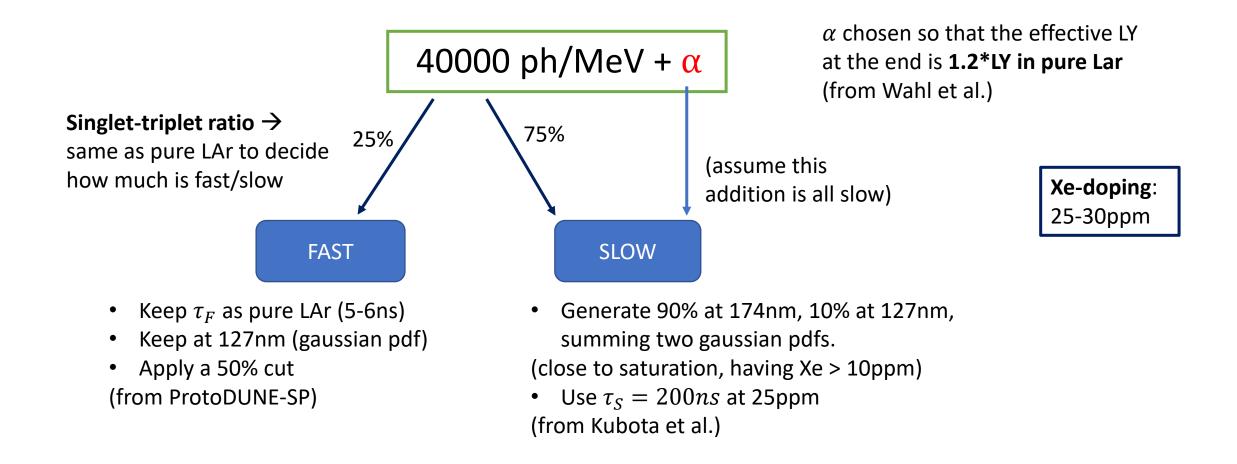
4. Light yield

- Relative increase to pure Ar (+ 20%) despite known fast component suppression
- This higher light-yield before propagation (not just a consequence of higher RLS or sensor QE)
- (E. Segreto 2021, https://doi.org/10.1103/PhysRevD.10 3.043001)

	LAr (128nm)	Xe (175nm)		
RLS (m)	1 [1]	8.3 [1]		
Abs. L. (m)	20	20		
Refl.	27%	27%		

^[1] M. Babicz et al 2020 JINST 15 P09009




FIG. 4. Variation of the LY of LAr and xenon shifted photons as a function of the xenon concentration in pppm (mass). The experimental points at zero xenon concentration have been shifted to 10^{-2} ppm to facilitate the visualization. The model prediction is shown as a magenta line.

What Xe-doping do we need?

• Fast component:

- Lost immediately (already at 1ppm).
- It can be recovered only at very high concentrations (1000ppm), probably too expensive?
- Slow component:
 - At least 10ppm needed to saturate its conversion to 174nm
 - Higher Xe-doping \rightarrow shorter τ_S : 200ns at 25ppm, 90ns at 125ppm
 - What time constant do we need? It depends on the time window we will have, which depends on the expected background.

25ppm implementation

Comments

- Increase in LY is uncertain → difficult to correctly estimate it in complex setups.
 - Keep pure LAr LY to be conservative
- Fast component reduction is doubtful: protoDUNE had issues with purity which may strongly affect the fast component.
 - \rightarrow investigate what to do
- High concentrations can be bad for physics (different nucleus, different cross-section), but are not too expensive + Xe is very soluble.
 - \rightarrow investigate higher limit from Physics