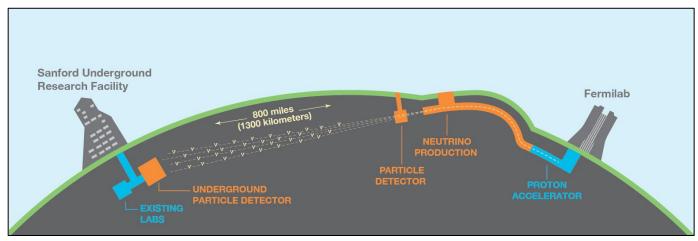
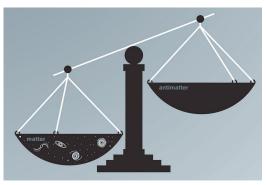
Ionization Laser Calibration for the DUNE Time Projection Chamber


Rebecca Hicks Los Alamos National Lab (On behalf of DUNE Collaboration) Fermilab New Perspectives June 16, 2022

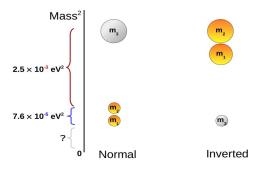
Introduction: DUNE

The Deep Underground Neutrino Experiment (DUNE) is a next-generation, liquid argon time projection chamber (LArTPC) neutrino experiment - the largest of its kind.

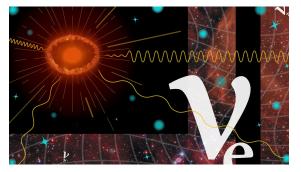
- Near detector will be located at Fermilab
- Far detector will be located at the Sanford Underground Research Facility in South Dakota


[1] "An International Experiment for Neutrino Science" Deep Underground Neutrino Experiment, http://www.dunescience.org/

DUNE Physics Goals


For More on these goals, visit: DUNEScience.org

• DUNE is designed to address a large spectrum of physics goals


Matter v. Antimatter [3]

By exploring neutrino oscillations, DUNE can search for leptonic charge-parity (CP) violation, a potential reason there is more matter than antimatter in the universe.

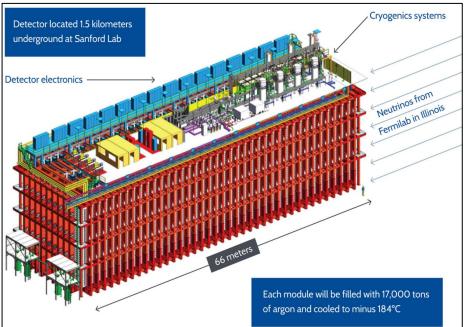
Neutrino Mass Hierarchy [4]

DUNE's baseline will allow for measurements of the neutrino mass hierarchy.

Supernovae [5]

Neutrinos produced from neutron star or blackhole formations can be detected - allowing insight into the dynamics of these processes

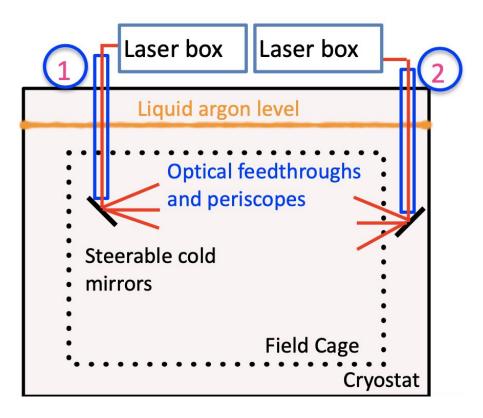
[1] "An International Experiment for Neutrino Science"


[3] "CP Violation" Symmetry Magazine

[4] "What is the neutrino mass hierarchy?" *Hyper-Kamiokande* [5] "The supernova that keeps on giving" *Symmetry Magazine*

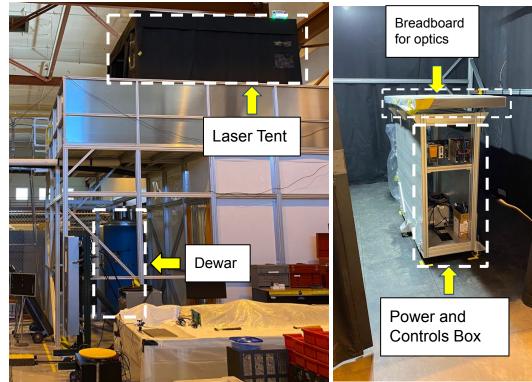
DUNE Far Detector

- Far detector (FD) nominally consists of four 17.5 kt LArTPC modules
- LArTPC experiments, particularly surface detectors, can utilize cosmic ray muons to calibrate the detector
- DUNE's FD will be located ~1,500m underground
- Other calibration sources are required


[2] B. Abi, R. Acciarri, & et. al.. (2020). Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology.

Ionization Laser System

DUNE will utilize an ionization laser (IoLaser) calibration system in order to meet stringent systematic requirements (1-2%).


- The Ionization Laser System will create tracks with known origin and direction in the TPC Volume
- Two periscope designs, interior and exterior to detector field cage, will be installed in DUNE.
 - Overlapping coverage reduces uncertainty in reconstruction map

Full System Tests at LANL

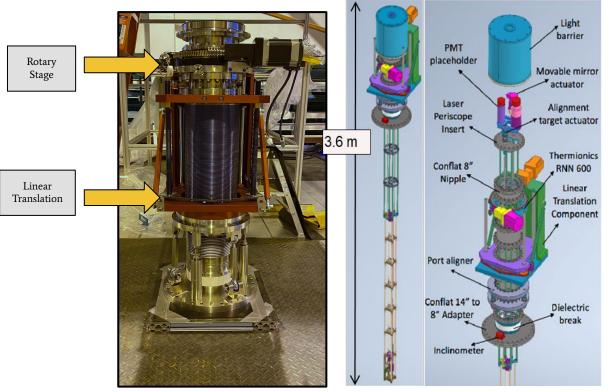
- Laser Tent contains optical equipment where laser will safely be contained and controlled from
 - Also contains computers to control laser and motors that operate periscope
- Periscopes mounted on test stand and will be fed into dewar below for cryogenic tests



Periscope Images

Looking down the periscope

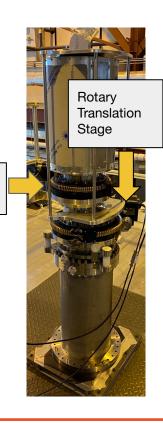
Looking up the periscope

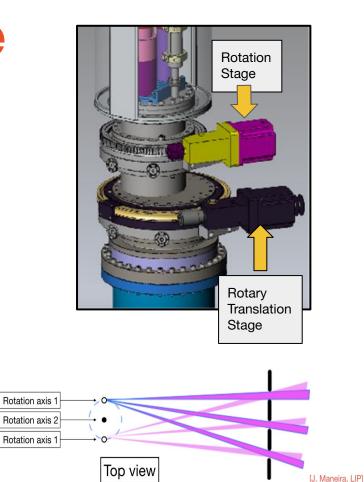


Periscope assembled in test stand

Interior Field Cage Periscope

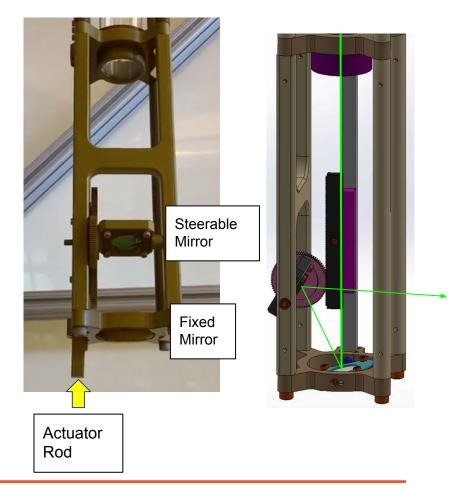
- Designed to penetrate the detector field cage
- <u>Rotary stage</u> allows for rotation of the periscope
- <u>Linear translation</u> stage allows for extension/retraction of the periscope




Periscope 1 (Interior)

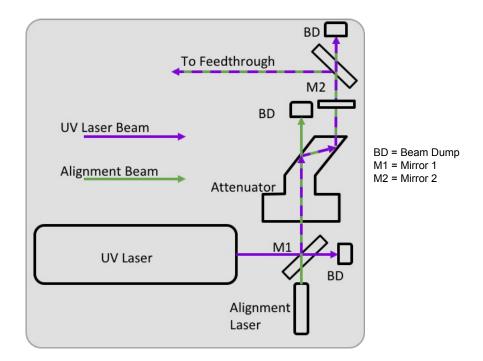
End Wall Periscope

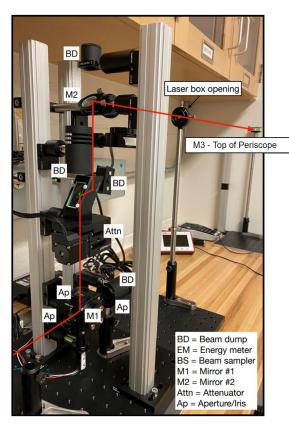
- Design is external to detector field cage
- <u>Rotation stage</u> allows for rotation of periscope
- <u>Rotary translation stage</u> Stage allows for periscope to move 6 cm, providing coverage around field cage obstacles

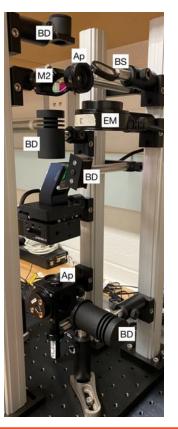


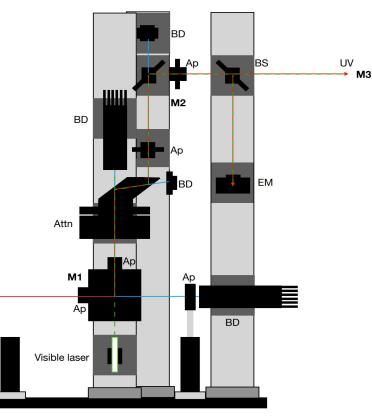
Steerable Mirror

- Both periscope designs contain a steerable mirror to provide wide azimuthal coverage
- UV laser is aimed at fixed mirror at end of the periscope
- Laser is reflected on to steerable mirror
- Linear actuator rod moves rack and gear, steering the mirror and directing the laser

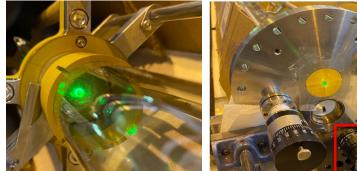



Beam Conditioning


An intense narrow beam of pure 266 nm (UV) light with a stable energy and profile is needed to ionize the LAr.


- Harmonic Splitting optics purifies
 beam composition
- <u>Attenuator</u> controls beam energy
- <u>Apertures</u> truncates beam width
- Beam Sampler and Energy Meters monitors laser energy

Optical Setup Photos



Rebecca Hicks | Fermilab New Perspectives

Laser Alignment

The UV laser must be aligned with optical equipment in order to maintain a consistent beam profile and direction.

- Detector must remain sealed, alignment cannot be visually validated
- Camera is placed near viewport at the top of the periscope, aimed at the mirror
- Will minimize reflections and deviations from alignment laser to align UV laser

Visible laser aligned with middle target

Not-aligned

Aligned

Video of Periscope Motion

Laser Motion Demonstration


Motorized Mirror Demonstration

Summary & Next Steps

- Periscopes assembled and successfully tested in air at Los Alamos National Lab.
- Testing with class-IV laser beams and in LAr will start this month.
- 700-ton LArTPC prototypes at CERN (ProtoDUNEs), are used to validate technologies for DUNE
- Periscopes will be installed in the ProtoDUNE Horizontal Drift Module for Phase 2 operations in August to test technical and physics performance

Thank you!

References

[1] "An international experiment for neutrino science" *Deep Underground Neutrino Experiment*, <u>http://www.dunescience.org/</u>.

[2] B. Abi, R. Acciarri, & et. al.. (2020). Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology.

[3] "CP Violation" *Symmetry Magazine*, 1 Oct. 2005, <u>https://www.symmetrymagazine.org/article/october-2005/explain-it-in-60-seconds</u>

[4] "What is the neutrino mass hierarchy?" *Hyper-Kamiokande*, <u>http://www.hyper-k.org/en/physics/phys-hierarchy.html</u>

[5] "The supernova that keeps on giving" *Symmetry Magazine* 28 Apr. 2020, https://www.symmetrymagazine.org/article/the-supernova-that-keeps-on-giving-sn1987a

