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2 Executive Summary

E�ciently harnessing the interaction of charged particles with extremely high electromagnetic fields
at very high frequencies is the key to reaching ultra high gradients (GeV/m and beyond) and hence
to reducing the dimensions, C02 footprint, and costs of future high energy physics machines, with
the potential to reduce power consumption and o�er e+e- and W � W machines at and beyond 15
TeV. In addition to proven high gradient and ultra-bright beam generation, these systems have the
potential for fast cooling, for short beams to increase luminosity per unit beam power, and for
practical energy recovery to extend the reach of high energy physics. Techniques range from laser
and beam driven plasma and advanced structure accelerators to advanced phase space manipulations
and generation of beams with extreme parameters [1]. Recognizing this promise the last Snowmass
and P5/HEPAP recommended, and DOE developed with the community, an organized Advanced
Accelerator Development Strategy, and work has been aligned to this strategy [2].

In the last decade advanced accelerator research has seen tremendous progress including the
demonstration of multi-GeV acceleration in a single stage [3, 4], positron acceleration [5], e�cient
loading of the structure [6], the first staging of plasma accelerators [7], demonstration of beam
shaping to improve e�ciency in plasmas [? ] and structures [? ], high gradient structures [8] and
greatly improved beam quality which recently culminated in the spectacular first demonstrations of
laser-driven and beam-driven plasma based FELs [9, 10]. At the same time, potential issues for
colliders have been addressed demonstrating that in principle the required nm-class beam quality
can be preserved (addressing potential limits due to scattering, hosing, and radiation), and that
shaped bunches can be used to e�ciently accelerate beams without energy spread growth. Driver
technologies (SRF linacs, high average power lasers) are developing consistent with the needs of
future colliders.

While recent results indicate that the main building blocks of future advanced accelerators
are workable and promising, significant development is still required. This should in particular
further detail methods for high wall-plug e�ciency and high repetition rates to fulfill future collider
luminosity requirements, for small energy spreads and beam emittance preservation over many
acceleration stages and for plasma-based schemes, show that high quality positron beams can be
accelerated.

With the goals of addressing these long standing questions and realizing the promise of
advanced accelerators, in addition to a strengthened R&D program to solve outstanding critical
issues two new research directions can be identified. An integrated design is needed to unite these
techniques for future colliders. At the same time the need is also clear to pursue nearer-term
applications both inside and outside high-energy physics.

In order to move forward, a vigorous R&D program is required. The US is in a good position
in this respect with several state of the art of beam test facilities mainly dedicated to research in the
advanced accelerator field, including FACET-II, BELLA, ATF, AWA and FAST-IOTA as well as
numerous universities. Strong R&D using these facilities and programs is needed to push forward
the key next steps in the Development Strategy including staging of multiple modules at multi-GeV,
high e�ciency stages, preservation of emittance for electrons and positrons, and shaped beams,
as well as the development of e�cient, low-cost and high repetition rate drivers. The facilities
are organized in a beam test facility council which serves to foster collaboration and minimize

– 3 –



duplication of e�orts. Proposed upgrades of the test facilities (including a kBELLA high repetition
rate driver and accelerator demonstrator, positrons at FACET-II, and a GeV-class scalable module
at AWA) and new R&D are needed to maintain US position in developing this next generation of
capabilities in an international environment with $B-class investment overseas.

The development of an integrated design study for compact high-gradient colliders is deemed
critical to guide the e�orts and provide a clear and actionable R&D path. This builds on recent work
that has developed collider concepts and parameter sets. The study would provide detailed examples
of how the main challenges can be addressed and clarify where experimental demonstrations, or
detailed simulations of the relevant sub-systems, are needed. The design study should include
enough detail to make cost estimates and should include strategies for demonstration colliders at
moderate energies c.a. 100 GeV. In particular, bottom-up estimates will be needed for the new
technology and components that have unusually tight tolerances. Developing this will require
funding which has not been available to date. Notably, the European roadmap for accelerators
includes a full chapter on advanced accelerators and is well aligned with our call for an organized
integrated design study. The minimum requested funding for this task is 147 FTE-years and 3.15
MCh. It is critical that in order to avoid losing leadership in this field, a process slowly occurring
in many scientific areas as recently highlighted in a high-profile BESAC report [11], the US should
at least match in investment.

Successful deployment of advanced concepts in real-world accelerator applications such as
coherent and/or incoherent radiation sources will be essential to provide the necessary intermediate
steps before compact accelerators can be applied to the most demanding high-energy physics appli-
cations. The international community has long recognized the role of such near-term applications
as stepping stones for high energy physics machines and has strongly invested in them (see for
example the EUPRAXIA project). Even though the advanced accelerator field was born and is
still squarely centered in the US, it is telling that the most recent high profile plasma-based FEL
demonstrations occurred in Europe and Asia. This kind of research in the US is unfortunately not
seen as directly impacting HEP, putting in jeopardy the US leadership in the field.

At the same time, synergies with existing or near future colliders should be explored in the
near term. The extremely high fields of advanced accelerator concepts could be used for transverse
focusing of the beam, advanced phase space manipulations or particle sources. Possible upgrade
paths of existing and near-term machines that could benefit from advanced accelerator concepts
should be identified. E�orts on high brightness electron sources, polarized positron generation, high
average power laser drivers, and beam delivery systems are particularly important in this regard.

While advanced accelerators in plasmas and structures continue to advance towards collider
and near term applications, innovative concepts such as nanoplasmonics and laser-driven structures
continue to emerge o�ering the potential for greater reach, new accelerator components, and near
term applications in the future. In this context, advanced accelerator R&D and facilities serve all
novel accelerator research. Furthermore, they play a critical role in accelerator and beam workforce
development and diversity since they allow hands-on training with strong publication (over 1000
papers/year) for the next generation of accelerator scientists from more diverse communities who
are often attracted to the field by the scientific novelty and rich physics of advanced accelerators.
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Priority research should continue to address and update the Advanced Accelerator Development
Strategy:

• Vigorous research on advanced accelerators including experimental, theoretical, and compu-
tational components, should be conducted as part of the General Accelerator R&D program to
make rapid progress along the advanced accelerator R&D roadmaps towards an eventual high
energy collider, develop intermediate applications, and ensure international competitiveness.
Priority directions include staging of multiple modules at multi-GeV, high e�ciency stages,
preservation of emittance for electrons and positrons, and shaped beams and deployment of
advanced accelerator in real-world applications.

• A targeted R&D program for a integrated design study of a high energy (1–15 TeV) advanced
accelerator-based collider should be performed that details all the components of the system,
such the injector, drive laser, plasma source, beam cooling, and beam delivery system. This
would set the stage for a future conceptual design report, after the next Snowmass.

• Enhanced driver R&D is needed to develop the e�cient, high repetition rate, high average
power laser and accelerator technology that will power laser-driven advanced accelerators
colliders and societal applications.

• Support of upgrades for Beam Test Facilities are needed to maintain progress on advanced
accelerator Roadmaps. These include development of a high repetition rate facility, proposed
as kBELLA, to support precision active feedback and high rate; independently controllable
positrons to explore high quality acceleration, proposed at FACET-II; and implementation of
a integrated SWFA demonstrator, proposed at AWA.

• A study for a collider demonstration facility at an intermediate energy (20–80 GeV), and near
term applications, should establish a plan that would demonstrate essential technology and
provide a facility for physics experiments at intermediate energy.

• A DOE-HEP workshop in the near term should update and formalize the U.S. advanced
accelerator strategy and roadmaps including updates to the 2016 AARDS Roadmaps
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