# MUON MOMENTUM ESTIMATION USING MULTIPLE COULOMB SCATTERING IN PROTODUNE

#### SIVA PRASAD K

**NEW PERSPECTIVES 2022 FERMILAB, USA** 



## **DUNE Experiment**

- Deep Underground Neutrino Experiment (DUNE) is an acceleratedbased long-baseline neutrino oscillation experiment.
  - Goals: Determine CP violation, mass hierarchy, precise measurement of oscillation parameters.
- It consists of near detector (ND) situated at Fermilab, and far detector (FD) situated at Stanford Underground Research Facility (SURF).
  - ❀ Near detector constraints on flux and cross-section uncertainties.
  - ℁ Far detector study the neutrino oscillations.
  - ✤ ProtoDUNE Single Phase (SP) prototype for the far detector at CERN.



#### Siva Prasad K | Muon Momentum Estimation using Multiple Coulomb Scattering in ProtoDUNE

## **DUNE Experiment**

- Deep Underground Neutrino Experiment (DUNE) is an acceleratedbased long-baseline neutrino oscillation experiment.
  - Goals: Determine CP violation, mass hierarchy, precise measurement of oscillation parameters.
- It consists of near detector (ND) situated at Fermilab, and far detector (FD) situated at Stanford Underground Research Facility (SURF).
  - ❀ Near detector constraints on flux and cross-section uncertainties.
  - ℁ Far detector study the neutrino oscillations.
  - ✤ ProtoDUNE Single Phase (SP) prototype for the far detector at CERN.
- DUNE FD and ProtoDUNE SP uses the Liquid-Argon Time Projection Chamber (LArTPC) technology to identify the particle interactions.
- Momentum estimation of incoming beam particles is essential to understand the detector response and calibration to satisfy the design goals of ProtoDUNE SP.
  - Multiple Coulomb Scattering (MCS) can be used to estimate the particle momentum.

# Multiple Coulomb Scattering (MCS)

- Multiple Coulomb Scattering (MCS) is an electro-magnetic scattering of charged particles off atomic nuclei when traversing a medium.
  - Can be used to estimate the momentum of exiting muons in particular.
- This method is based on dividing a track into small segments of characteristic length and measuring the angles between the adjacent segments.
  - For muons in Liquid Argon (LAr), segments are of 14 cm length (radiation length).



arXiv:1612.07715

# **MCS Angle Distributions**

The angle distributions are Gaussian centered at 0 and the width is given by Highland Formula

where p - muon momentum, L distance traveled,  $X_0$  - radiation length,  $\epsilon$  - efficiency,  $S_2$  - parameter MeV/c

\*\* 
$$\sigma_{HL} = \frac{\kappa(p)}{p\beta c}$$
, where  $\kappa(p) = \frac{\kappa_a}{p^2} + \kappa_c$ ,  
( $\kappa_a$ ,  $\kappa_c$  are fit parameters)

Segments are between dashed vertical lines



<sup></sup> In addition, a detector inherent resolution term is added in quadrature to  $σ_{HL}$ .

Siva Prasad K | Muon Momentum Estimation using Multiple Coulomb Scattering in ProtoDUNE

arXiv: 1703.06187

3

# **MCS Angle Calculations**

- Segment is a collection of trajectory points within 14 cm length and a vector is defined by the linear fits to those trajectory points.
- For a given segment, the angles are measured following a co-ordinate transformation where the Z-axis will lie on the previous segment.

$$\# \theta'_{XZ} = \tan^{-1}(\Delta x'/\Delta z')$$

 $\# \theta'_{YZ} = \tan^{-1}(\Delta y' / \Delta z')$ 

The width of the angular distributions as a function of muon momentum are then fitted using Eq.
[3] to extract the fit parameters.



# **MCS Momentum Estimation**

- MCS momentum is estimated using a maximum likelihood method.
- The probability that a scattering angle for a given pair of segments would occur follows a Gaussian distribution.
- Total likelihood is obtained by adding f in Eq. [4] for all segments along the track.
- The energy loss is considered using Bethe-Block equation.
- The momentum corresponding to the maximum likelihood is the estimated MCS momentum.

$$f(\Delta\theta) = (2\pi\sigma)^{-1/2} \exp\left[-\frac{1}{2}\left(\frac{\Delta\theta}{\sigma}\right)^2\right]$$
  
where  $\sigma$  is from Eq. [2],  $\Delta\theta$  is angle

#### **Monte Carlo Samples**

- Simulated about 100k single muons with a momentum range between 0.5 - 4.0 GeV/c with uniform distribution.
- Space charge effects are not simulated.
- Pandora reconstructed tracks are used for this analysis.



#### **MCS Angles vs Segment Momentum**



#### **MCS Angles vs Segment Momentum**



#### **MCS Angles vs Segment Momentum**



Sigma of the reconstructed projected angle distributions are fitted with  $\sigma_{RMS}$  (green curve).

 $\ll \sigma_{RMS}$  fit chooses  $\kappa_a$ ,  $\kappa_c$ ,  $\sigma_{RES}$  parameters.

#### **MCS Momentum Estimation**

Reco Linear MCS Momentum vs True Momentum



(MCS Momentum-True Momentum)/True Momentum

- Momentum estimation uses the fit to the angle distributions using the maximum likelihood method.
- \*\* For a given  $\sigma_{RMS}$ , find the momentum at which the likelihood is maximum.

#### **Fractional Bias & Resolution**



Reco Linear Fractional Bias vs. True Momentum

- <sup></sup> Fractional Bias is the average of  $\Delta P$ .
- <sup></sup> Fractional Resolution is the spread in  $\Delta P$ .
- Large bias above 2.5 GeV/c possibly due to underestimation of MCS momentum as angles are small.

#### **Fractional Bias & Resolution**



Siva Prasad K | Muon Momentum Estimation using Multiple Coulomb Scattering in ProtoDUNE

#### Summary & Next Steps

- Preliminary results on MCS momentum estimation presented for the reconstructed trajectories using single muon sample with momentum range between 0.5 - 4 GeV/c.
- Solution & Solution
- - **%** Run the analysis on official ProtoDUNE-SP production samples.

### Summary & Next Steps

- Preliminary results on MCS momentum estimation presented for the reconstructed trajectories using single muon sample with momentum range between 0.5 - 4 GeV/c.
- Solution & Solution
- - **\*\*** Run the analysis on official ProtoDUNE-SP production samples.

# **THANK YOU**

