LBNE Physics Working Group

Mel Shochet

April 25, 2012

Working Group Members

- Mary Bishai BNL
- Ed Blucher Chicago
- Steve Brice FNAL
- Milind Diwan BNL
- Bonnie Fleming Yale
- Gil Gilchriese LBNL
- Bill Marciano BNL
- Mark Messier Indiana
- Stephen Parke FNAL
- Gina Rameika FNAL
- Kate Scholberg Duke
- Mel Shochet Chicago (chair)
- Jenny Thomas UCL
- Charlie Young SLAC
- Sam Zeller FNAL
- Jeff Appel FNAL (scientific secretary)

Our Charge: evaluate specific options (reach for mass hierarchy, ØP, p decay, supernova v's) as a function of detector mass for physics, cost analysis

- Homestake: LAr detector at 4800' or at the surface
- Soudan: LAr detector at 2300' or at the surface
- Ash River: LAr detector at the surface
- Split the mass between Soudan and Ash River

To assess the maximum physics that can be extracted from a choice that will be severely limited by available funds, we are to include the results from T2K & NOvA and, for the Minnesota options, continued running of NOvA. This is particularly important for determining the mass hierarchy.

Detector Assumptions

- LBNE
 - LAr TPC of varying fiducial masses (2 kton-34 kton)
 - L = 1300 km (Homestake), 735 km (Soudan), 810 km (Ash River)
 - 700 kW beam = 6x10²⁰ POT/year
 - detector performance from arXiv: 1110.6249 [hep-ex]
- NOvA
 - 15 kton liquid scintillator detector
 - L = 810 km
 - 700 kW beam = 6x10²⁰ POT/year
 - detector performance from GLoBES

(http://www.mpi-hd.mpg.de/personalhomes/globes/glb/0709-nova.glb)

- T2K
 - 22.5 kton water Cerenkov detector
 - L = 295 km
 - expected exposure provided by Japan (see next slide)
 - detector performance from GLoBES

(http://www.mpi-hd.mpg.de/personalhomes/globes/glb/0709-t2k.glb)

T2K Expected Exposure

Period	Integ. No. of	Proton on Target	Beam Power (kW)
-Jun.2012		3.1E+20	170
- Jun.2013		7.8E+20	200
-Jun.2014		1.2E+21	250 *
-Jun.2015		1.8E+21	250
- Jun.2016		2.5E+21	300
- Jun.2017		3.2E+21	300
- Jun.2018		3.9E+21	300
- Jun.2019		5.5E+21	700 *
- Jun.2020		7.1E+21	700
-Jun.2021		8.8E+21	700

*1 Completion time of MR upgrade (assumed to be 2018) is suject to change, depending on economical situation, readiness and so on.

*2 LINAC upgrade completed

* Beam Energy 30GeV

Gina will show results as a function of the total T2K exposure.

Assumed Neutrino Oscillation Parameters

 $\begin{array}{l} \theta_{12} = 0.593 \pm 0.018 \\ \theta_{23} = 0.705 \pm 0.078 \\ \theta_{13} = 0.154 \pm 0.005^* \\ \Delta m_{21}^2 = (7.58 \pm 0.23) \ \text{x10}^{-5} \ \text{eV}^2 \\ |\Delta m_{31}^2| = (2.35 \pm 0.12) \ \text{x10}^{-3} \ \text{eV}^2 \ (\Delta m_{31} > 0 \ \text{NH}, < 0 \ \text{IH}) \end{array}$

from G.L. Fogli *et al.*, PRD 84, 053007 (2011) *Daya Bay result with systematic error only, from arXiv:1203.1669 [hep-ex]

Some issues to be considered post-workshop

- Impact of the near-detector performance.
- Running off-axis to Homestake.
- Changing assumed v oscillation parameters by 1 or 2 σ .