Charge Exchange Inclusive Differential Cross Section Measurement

EM Shower Group Meeting Kang Yang, University of Oxford 11 July 2022

Signal Topology

2

11/07/2022

• 1GeV π^+ beam events in ProtoDUNE-SP.

Pion Absorption (background)	Νο	Νο	Yes
Pion Inelastic (background)	Yes	Νο	Yes
Single Pi0 (background)	Yes	Yes (only 1 π^0)	Yes
Multi Pi0 (background)	-	Yes (> 1 π^{0})	Yes

Thin-Slice Method

- Interaction probability $\frac{N_{int}}{N_{inc}} = P_{Int} = 1 e^{-\sigma_{Tot} n \,\delta X}$, $n = \frac{\rho N_A}{m_{Ar}}$ is the density of the target.
- The interaction length of pions in liquid argon is of the order of \sim 50 cm.
- Treat the argon volume as a sequence of many adjacent thin targets.

Thin-Slice Method

$$\sigma = \frac{m_{Ar}}{\rho \delta X N_A} \ln(\frac{N_{inc}}{N_{inc} - N_{int}})$$

- ✤ m_{Ar} is the mass of argon atom
- ✤ N_A is the Avogadro constant
- δX is the thickness of the slice
- *N_{inc}* is the number of incident beam pions in a slice
- *N_{int}* is the number of beam pions which have interactions in a slice

Francesca's thesis

Method Validation in Truth Level

- N_{inc} and N_{int} are two 1D histogram in terms of beam pion kinetic energy (KE).
- Two PDSP Analyzer variables are used to fill the histograms:
 true_beam_traj_Z (true beam trajectory points z coordinates)
 true_beam_traj_KE (true beam trajectory points kinetic energy)

- Spatial slicing $\delta X = 0.479 \text{ cm}$ wire spacing/pitch.
- Each histogram has a range of 0 1000 MeV with a bin width of 50 MeV

Method Validation in Truth Level

- Only include trajectory points starting in the active volume
- Only include trajectory points less than slice 464 (the end of APA3)
- Loop over all trajectory points
- Calculate ΔZ and ΔKE between adjacent points

• Use
$$\frac{\delta X}{\Delta Z} = \frac{\delta E}{\Delta KE}$$
 to get energy slices

- Obtain a new beam KE vector with wire pitch (0.479 cm) slicing
- If the last trajectory point ends within the APA3, the beam interacting energy is assigned.

Total Truth Cross Section σ_{CEX}

- If beam PDG is 211, then loop over the new KE vector and fill N_{inc} histogram.
- If beam end process is "pi+Inelastic" and with charge exchange topology, then fill N_{int} histogram with the last element of the new KE vector.
- For each bin i, the cross section is calculated as:

•
$$\sigma_{i} = \frac{m_{Ar}}{\rho \delta X N_{A}} \ln \left(\frac{N_{inc}}{N_{inc} - N_{int}} \right)_{i}$$

- m_{Ar} = 39.95 g/mol, ρ = 1.39 g/cm^3
- $N_A = 6.02 \times 10^{23} \text{ 1/mol}, \delta X = 0.479 \text{ cm}$

Differential Cross Section Formula

• Calculate the differential cross section as,

$$\sigma_i \approx \frac{m_{Ar}}{\rho \delta X N_A} \frac{N_{int}^i}{N_{inc}^i}$$

$$\left(\frac{d\sigma}{dE_{\pi^0}}\right)_{ij} = \frac{m_{Ar}}{\rho\delta X N_A} \frac{1}{(\Delta E_{\pi^0})} \frac{N_{int}^{ij}}{N_{inc}^{i}}$$
(Eq. 1)

2.2

• Thin slice total CEX cross section is,

8

$$\sigma_i = \frac{m_{Ar}}{\rho \delta X N_A} \frac{N_{int}^i}{N_{inc}^i}$$
 (Eq. 2)

 ΔE_{π^0} is the bin width of π^0 KE

Index i : beam E_{π^+} bin, Index j : daughter E_{π^0} bin

• Then the differential cross section formula is (Sub. Eq. 2 into Eq. 1),

$$\left(\frac{d\sigma}{dE_{\pi^0}}\right)_{ij} = \frac{1}{(\Delta E_{\pi^0})} \frac{N_{int}^{ij}}{N_{int}^i} \sigma_i$$

Thank you Jonathon Sensenig for useful discussions!

GEANT4 and Truth d\sigma Calculation

- The Geant4Rewight package is used to extract the differential cross section, $\frac{d\sigma}{dE}$
- Measure differential XS at each bin i (for a given pion KE).

d σ Validation in Truth Level

• The differential cross section formula works well in truth level.

10

11/07/2022

• There are three peaks in the differential cross section distribution.

• Nucleus is defined as PDG > 2212, such as a Δ baryon.

Middle E_{π^0} Region

• Less Δ baryons are produced.

High E_{π^0} Region

- Only one Δ baryon is produced.
- Decays into a nucleon and a π^0 .
- The direction of π^0 is forward.

Fake Data Test

Fake Data

- Full 1GeV Pion MC sample is divided into 2 sub-samples.
 - 1. Fake Data
 - 2. MC
- MC sample is used to train the mapping response matrix for unfolding.
- Fake Data is used to validate the cross section extraction procedures.
- The unfolding is done using RooUnfold package (iterative Bayesian method, 4 iterations)

Background Subtraction & Unfolding

- Mapping response matrix is trained using half of the total MC.
- The other half of the MC is used to test the unfolding procedures.
- The red histogram is computed using the truth information of the fake data sample.

Total Cross Section σ_{CEX} Measurement

- MC Reco is the fake data sample after background subtraction and unfolding.
- MC Truth is derived using the truth information of the fake data sample.
- Above 300 MeV, both Reco and Truth agree with the Gean4 predication well.

π^0 Kinematic Energy Reconstruction

! All Reco Pion Beam Sample !

- Reconstructed π^0 kinetic energy distribution from my previous π^0 analysis.
- Event topology definitions can be found in page 2.
- Signal (charge exchange) is around 60%.
- The largest background is single π^0 events but with $\pi^{+/-} > 0$ (19%)
- No phase space cut on daughter $\pi^{+/-}$ (cannot detect pion with mom. < 150 MeV/c)

Towards $d\sigma$ Measurement

Summary

- The formula for computing the differential cross section is discussed.
- Truth-level validation is performed and shows good agreement with Geant4 input.
- Fake data sample (1/2 of MC sample) is used to perform the charge exchange cross section measurement.
- After unfolding, both MC Reco and Truth of the fake data sample agree well with the prediction.
- Obtained all the ingredients for differential cross section measurements using fake data.

