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P(ν
μ
→ν

e
) depends on four 

parameters in a complicated way
● Three major open questions in neutrino 

oscillations can be addressed by 
measuring νμ→νe transitions
● CP violation (δCP)
● Mass ordering
● θ23 octant

● These can be measured with accelerator 
(NOvA, T2K, T2HK, DUNE) and 
atmospheric (IceCUBE, SK, HK, 
km3net) neutrinos

● All of these experiments measure 
something that is sensitive to four 
parameters (θ13, θ23, δCP, Δm2

atm) in a 
complicated way

● All measurements are actually allowed 
regions in this 4D parameter space, 
which can then be projected down to 1 
or 2 parameters

T2K
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There are several places where 
allowed regions can be disjoint

NOvA

● To leading order, experiments 
are sensitive to the product 
sin22θ13sin2θ23, so it is 
common for these parameters 
to be highly correlated in fits

● νμ disappearance constrains 
sin22θ23; when it is non-
maximal, postfit probability 
density distributions become 
bimodal

● This makes it especially 
challenging for appearance 
experiments to measure θ13
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What is “resolution” when there are 
disjoint allowed regions?

● One can define a parameter resolution as the width of the 68% 
allowed region, or the width of the Δχ2 < 1 region, but it’s not 
obvious what to do when there are two disconnected regions

● This happened not to be a problem for us at 68%, but it is a 
problem at 90%
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Example: the “sinδ degeneracy”

DUNE FHC 3.5yrs

π/2 at flux peak
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By focusing on 0° and 90°, we are 
sidestepping this issue

● DUNE has slightly better δ resolution than T2HK at 0 and 90, which are the points where shape 
matters the least

● I strongly suspect that T2HK has almost no ability to distinguish 45° from 135°, whereas DUNE 
can

● T2HK has never said what “error of δ” means, or shown any plots of resolutions at other true values 
of δ (this issue doesn’t affect CPV significance)

● It is likely that δ is not a multiple of π/2, and it is bad for DUNE/T2HK comparisons that the 
conversation is so focused on maximal CPV
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θ
13

: cross check and non-unitarity 
● DUNE has ~0.004 resolution to 

sin22θ13, which is roughly twice 
as good as T2HK reports

● Daya Bay resolution is 0.003, 
and has no meaningful cross-
check currently (other 
measurements are ~10x worse)

● A deviation between θ13 from 
appearance and disappearance 
would be indirect evidence of 
PMNS non-unitarity → DUNE is 
the best way to do this 
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Proposal
● Choose a few especially challenging true oscillation points 

(NO, lower octant, δ ~ -π/4?) to run a large number of throws, 
and look at the 3D or 4D distribution of best fit values

● Look at the 1σ-90%-3σ allowed regions for δ, θ13, θ23; at least 
the 90% and 3σ will have tricky correlations

● Look at DUNE-Daya Bay non-unitarity test for different 
values of θ23, for what region(s) of parameter space are we 
sensitive to non-unitarity

● I think this could make a third paper where we purposely seek 
out the hard regions and show how DUNE’s spectral 
information ultimately resolves them
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● Previous measurements of oscillation parameters have 
been treated independently, omitting possible 
correlations.

● As we develop the next generation of precision 
neutrino experiments, including DUNE, these 
correlations become significant

● Understanding how DUNE fits of oscillation 
parameters are affected by these correlations enables 
more accurate evaluation of DUNE’s sensitivity to new 
physics.

Why this study?
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Initial TDR Analysis
● Resolution plots using LBL 

TDR analysis data.

● TOP: δcp post fit (pf) – true 
vs true

● Sine dependence at flux 
peak---high precision at 
minimal cp violation, with 
0-π octant degeneracy

● BOTTOM: sin2θ23 pf – true 
vs true

● Octant flip at non-
maximal mixing
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δcp octant degeneracy

● νμ→νe oscillation eqn 
has sine dependence on 
δcp (at flux peak) 

●  Higher precision at 
minimal cp violation        
 (-π, 0, π.)

● Octant degeneracy
● 90% confidence interval 

captures degeneracy
● Interval asymmetry 

about δcp slice value
● Octant asymmetry about 

  δcp = 0

Red line: 68% conf. int.
Blue line: 90% conf. int.
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θ23 octant flip effect on θ13

0.45 < sin2θ23 < 0.55 sin2θ23 < 0.45 or > 0.55
● Above: θ13 Post fit - true distributions, θ23 measured in wrong octant

● θ23 octant error leads to bimodality in θ13 measurement

● Less maximal θ23 = greater bimodality

● Asymmetry between modes on right plot: what favors under- vs over-estimation?
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δcp effect?

● Flipping δcp appears to be uncorrelated with θ13 measurement
● δcp degeneracy appears to be independent of θ13-θ23 

correlation

0.45 < sin2θ23 < 0.55 sin2θ23 < 0.45 or > 0.55
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θ23 octant flip effect on θ13

7 year exposure 15 year exposure

● sin22θ13 postfit distribution shown at fixed sin2θ23 ≈ 0.58.
● Underestimated sin2θ23 corresponds to overestimated sin22θ13, gap 

between modes due to disfavored maximal θ23

● Increasing exposure decreases octant error significance

True sin2θ23 ≈ 0.58 True sin2θ23 ≈ 0.58 
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θ23 octant flip effect on θ13

7 year exposure 15 year exposure

● sin22θ13 post fit distribution shown at fixed sin2θ23 ≈ 0.58.
● Underestimated sin2θ23 corresponds to overestimated sin22θ13, gap 

between modes due to disfavored maximal θ23

● Increasing exposure decreases octant error significance

True sin2θ23 ≈ 0.58 
Red: 68% conf.
Blue: 90% conf.

True sin2θ23 ≈ 0.58 
Red: 68% conf.
Blue: 90% conf.
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PF θ13 distribution depends on θ23

7 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23
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PF θ13 distribution depends on θ23

10 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23

Relative size of error mode decreases with exposure
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PF θ13 distribution depends on θ23

15 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23

Relative size of error mode decreases with exposure
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First single point analysis

● Toy analysis fixed at single point in 4d true parameter 
space

Parameter True Value

sin22θ13 0.088

Δm2
32 2.45 X 10-3 eV

sin2θ23 0.58

δcp -0.08π
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Parameters that appear weakly 
correlated or uncorrelated

Δm2
32 vs sin22θ13 sin2θ23 vs Δm2

32

δcp vs sin2θ23δcp vs Δm2
32
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Candidate correlated parameters

sin2θ23 vs sin22θ13 δcp vs sin22θ13

● Left: θ13-θ23 octant error
● Right: Octant error visible in θ13, correlation due to 

dominant νe appearance inverse proportionality to δcp
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Fixed point δcp vs sin22θ13

Post fit sin2θ23 > 0.5 (True octant) Post fit sin2θ23 < 0.5 (Error octant)

● Correlation strength weakly dependent on θ23 octant
● Stronger in true octant
● Allowed populations closer together in true octant
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Next steps

● Investigate DUNE θ13 sensitivity to indirect test of 
PMNS non-unitarity when combined with Daya Bay 
θ13 constraint

● Pick interesting allowed points in true parameter space, 
run throws, explore correlations in 3d/4d post fit 
parameter space, determine how correlations affect 1σ, 
90%, and 3σ confidence intervals

● Explore how increasing energy spectral information 
may resolve parameter degeneracies. Compare DUNE 
and HK resolution ability.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

