A third TDR-era paper:

deep dive into $\boldsymbol{\theta}_{13}, \boldsymbol{\theta}_{23}, \delta_{\mathrm{CP}}$ and parameter degeneracies
Chris Marshall \& Jeremy Fleishhacker University of Rochester 27 June 2022

D UNIVERSITY of
ROCHESTER

$P\left(v_{\mu} \rightarrow v_{e}\right)$ depends on four

 parameters in a complicated way

FIG. 64: Posteriors probabilities together with 1,2 and 3σ credible intervals for all the oscillation parameters of interest and their combinations in the normal mass ordering. A logarithmic scale is used for the axis corresponding to the posterior probability density, and darker colors correspond to larger probabilities.

- Three major open questions in neutrino oscillations can be addressed by measuring $v_{\mu} \rightarrow v_{\mathrm{e}}$ transitions
- CP violation (δ_{CP})
- Mass ordering
- θ_{23} octant
- These can be measured with accelerator (NOvA, T2K, T2HK, DUNE) and atmospheric (IceCUBE, SK, HK, km3net) neutrinos
- All of these experiments measure something that is sensitive to four parameters $\left(\theta_{13}, \theta_{23}, \delta_{\mathrm{CP}}, \Delta \mathrm{m}^{2}\right.$ atm $)$ in a complicated way
- All measurements are actually allowed regions in this 4D parameter space, which can then be projected down to 1 or 2 parameters

There are several places where allowed regions can be disjoint

- To leading order, experiments are sensitive to the product $\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}$, so it is common for these parameters to be highly correlated in fits
- v_{μ} disappearance constrains $\sin ^{2} 2 \theta_{23}$; when it is nonmaximal, postfit probability density distributions become bimodal
- This makes it especially challenging for appearance experiments to measure θ_{13}

What is "resolution" when there are disjoint allowed regions?

- One can define a parameter resolution as the width of the 68% allowed region, or the width of the $\Delta X^{2}<1$ region, but it's not obvious what to do when there are two disconnected regions
- This happened not to be a problem for us at 68%, but it is a problem at 90%

Example: the "sinঠ degeneracy"

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \simeq \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \frac{\sin ^{2}\left(\Delta_{31}-a L\right)}{\left(\Delta_{31}-a L\right)^{2}} \Delta_{31}^{2}
$$

$$
+\sin 2 \theta_{23} \sin 2 \theta_{13} \sin 2 \theta_{12} \frac{\sin \left(\Delta_{31}-a L\right)}{\Delta_{31}-a L} \Delta_{31} \frac{\sin (a L)}{a L} \Delta_{21} \cos \left(\Delta_{31}+\delta_{C P}\right)
$$

$$
+\cos ^{2} \theta_{23} \sin ^{2} \theta_{12} \frac{\sin ^{2}(a L)}{(a L)^{2}} \Delta_{21}^{2}
$$

DUNE FHC 3.5yrs

By focusing on 0° and 90°, we are sidestepping this issue

- DUNE has slightly better δ resolution than T2HK at 0 and 90 , which are the points where shape matters the least
- I strongly suspect that T2HK has almost no ability to distinguish 45° from 135°, whereas DUNE can
- T2HK has never said what "error of δ " means, or shown any plots of resolutions at other true values of δ (this issue doesn't affect CPV significance)
- It is likely that δ is not a multiple of $\pi / 2$, and it is bad for DUNE/T2HK comparisons that the conversation is so focused on maximal CPV

θ_{13} : cross check and non-unitarity

- DUNE has ~0.004 resolution to $\sin ^{2} 2 \theta_{13}$, which is roughly twice as good as T2HK reports
- Daya Bay resolution is 0.003, and has no meaningful crosscheck currently (other measurements are $\sim 10 \mathrm{x}$ worse)
- A deviation between θ_{13} from appearance and disappearance would be indirect evidence of PMNS non-unitarity \rightarrow DUNE is the best way to do this

Proposal

- Choose a few especially challenging true oscillation points (NO, lower octant, $\delta \sim-\pi / 4$?) to run a large number of throws, and look at the 3D or 4D distribution of best fit values
- Look at the $1 \sigma-90 \%-3 \sigma$ allowed regions for $\delta, \theta_{13}, \theta_{23}$; at least the 90% and 3σ will have tricky correlations
- Look at DUNE-Daya Bay non-unitarity test for different values of θ_{23}, for what region(s) of parameter space are we sensitive to non-unitarity
- I think this could make a third paper where we purposely seek out the hard regions and show how DUNE's spectral information ultimately resolves them

A little about me

- Undergraduate student at Carleton College, MN
- REU student at the University of Rochester

ROVCHESTIER

- Previously worked with the NSD neutrino group at Berkeley Lab

Why this study?

- Previous measurements of oscillation parameters have been treated independently, omitting possible correlations.
- As we develop the next generation of precision neutrino experiments, including DUNE, these correlations become significant
- Understanding how DUNE fits of oscillation parameters are affected by these correlations enables more accurate evaluation of DUNE's sensitivity to new physics.

Initial TDR Analysis

- Resolution plots using LBL TDR analysis data.
- TOP: $\delta_{\text {cp }}$ post fit (pf) - true vs true
- Sine dependence at flux peak---high precision at minimal Cp violation, with ${ }_{s}$ $0-\pi$ octant degeneracy
- BOTTOM: $\sin ^{2} \theta_{23}$ pf - true ${ }^{\frac{\text { 訁̄ }}{2}}$ vs true
- Octant flip at nonmaximal mixing

δ_{cp} octant degeneracy

- $v_{\mu} \rightarrow v_{e}$ oscillation eqn has sine dependence on $\delta_{\text {cp }}$ (at flux peak)
- Higher precision at minimal cp violation $(-\pi, 0, \pi$.
- Octant degeneracy
- 90\% confidence interval captures degeneracy
- Interval asymmetry about $\delta_{\text {cp }}$ slice value
- Octant asymmetry about $\delta_{\mathrm{cp}}=0$

$\boldsymbol{\theta}_{23}$ octant flip effect on $\boldsymbol{\theta}_{13}$

－Above：θ_{13} Post fit－true distributions，θ_{23} measured in wrong octant
－θ_{23} octant error leads to bimodality in θ_{13} measurement
－Less maximal $\theta_{23}=$ greater bimodality
－Asymmetry between modes on right plot：what favors under－vs over－estimation？

$\delta_{\text {ср }}$ effect?

- Flipping δ_{cp} appears to be uncorrelated with θ_{13} measurement
- δ_{cp} degeneracy appears to be independent of $\theta_{13}-\theta_{23}$ correlation

$\boldsymbol{\theta}_{23}$ octant flip effect on $\boldsymbol{\theta}_{13}$

- $\sin ^{2} 2 \theta_{13}$ postfit distribution shown at fixed $\sin ^{2} \theta_{23} \approx 0.58$.
- Underestimated $\sin ^{2} \theta_{23}$ corresponds to overestimated $\sin ^{2} 2 \theta_{13}$, gap between modes due to disfavored maximal θ_{23}
- Increasing exposure decreases octant error significance

$\boldsymbol{\theta}_{23}$ octant flip effect on $\boldsymbol{\theta}_{13}$

- $\sin ^{2} 2 \theta_{13}$ post fit distribution shown at fixed $\sin ^{2} \theta_{23} \approx 0.58$.
- Underestimated $\sin ^{2} \theta_{23}$ corresponds to overestimated $\sin ^{2} 2 \theta_{13}$, gap between modes due to disfavored maximal θ_{23}
- Increasing exposure decreases octant error significance

PF $\boldsymbol{\theta}_{13}$ distribution depends on $\boldsymbol{\theta}_{23}$

- Narrower true mode peak, greater trueerror mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

PF $\boldsymbol{\theta}_{13}$ distribution depends on $\boldsymbol{\theta}_{23}$

Relative size of error mode decreases with exposure

- Narrower true mode peak, greater trueerror mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

PF $\boldsymbol{\theta}_{13}$ distribution depends on $\boldsymbol{\theta}_{23}$

Relative size of error mode decreases with exposure

- Narrower true mode peak, greater trueerror mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

First single point analysis

- Toy analysis fixed at single point in $4 d$ true parameter space

Parameter	True Value
$\sin ^{2} 2 \theta_{13}$	0.088
$\Delta \mathrm{~m}^{2} 3$	$2.45 \times 10^{-3} \mathrm{eV}$
$\sin ^{2} \theta_{23}$	0.58
$\delta_{c p}$	-0.08π

Parameters that appear weakly correlated or uncorrelated

δ_{cp} vs $\Delta \mathrm{m}^{2}{ }_{32}$

cp vs $\sin ^{2} \theta_{23}$

Candidate correlated parameters

- Left: $\theta_{13}-\theta_{23}$ octant error
- Right: Octant error visible in θ_{13}, correlation due to dominant v_{e} appearance inverse proportionality to δ_{cp}

Fixed point $\delta_{\text {cp }}$ vs $\sin ^{2} 2 \theta_{13}$

- Correlation strength weakly dependent on θ_{23} octant
- Stronger in true octant
- Allowed populations closer together in true octant

Next steps

- Investigate DUNE θ_{13} sensitivity to indirect test of PMNS non-unitarity when combined with Daya Bay θ_{13} constraint
- Pick interesting allowed points in true parameter space, run throws, explore correlations in 3d/4d post fit parameter space, determine how correlations affect 1σ, 90%, and 3σ confidence intervals
- Explore how increasing energy spectral information may resolve parameter degeneracies. Compare DUNE and HK resolution ability.

