Physics impact of LBNF target outer container & support fins John Back University of Warwick 23 June 2022 DUNE-doc-25880 #### Introduction - Geant4 simulations of LBNF beamline: graphite target & 3 focusing horns - Cantilevered target, double-cone Ti support structure with He cooling - Proton beam: 120 GeV, 1.2 MW; QGSP_BERT hadronic model - Target core: $\mathbf{r} = \mathbf{8} \ \mathbf{mm}$, $\mathbf{L} = \mathbf{1.5} \ \mathbf{m}$ (prototype) & $\mathbf{1.8} \ \mathbf{m}$ (aspiration) - Overview of physics impact when we vary: - Outer titanium container thickness (0 to 2.5 mm in 0.5 mm steps) - Amount of material in the titanium target support fins (±45 & ±135 deg) - Plots of unoscillated ν signal & bkgnd fluxes extrapolated to far detector - Plots of CP sensitivity & exposure (run time x far detector 40 kt mass) - GLoBES, NuFit 4.0 parameters, normal neutrino mass ordering ### Target and Horn A integration Courtesy RAL High Power Targets Group Horn A inner conductor cone (r_{base} = 14cm, L_z = 40cm) to allow space for upstream target support structure ## Target detail: tapered outer container (titanium) ## Geant4 geometry ## Outer container upstream detail #### Outer container downstream detail ## Target titanium support fins Titanium fins placed at ±45 and ±135 deg in x-y plane 0.5 to 1 mm thick, fully extending along beam z axis 3 equal sections starting from end of upstream cone region #### Geant4 geometry: target support fins in x-y plane ## Creating holes in fin supports: r-z plane view ## Neutrino Flux Spectra at Far Detector - Nominal histos: $t_u = 3$ mm, $t_m = 1$ mm, $t_d = 0.7$ mm container taper - All other histos: $t_u = t_m = t_d = t_{oc} = 0$ to 2.5 mm, in 0.5 mm steps - For L = 1.5 m and 1.8 m core target lengths - Target support fin hole fractions: - **0.0** (solid) - 0.5 (half solid) - **1.0** (2 mm edges only) - Neutrino & anti-neutrino running - Unoscillated fluxes extrapolated to far detector L = 1.5 m, f_h = 0 (solid fins) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ____ 1.0 mm 1.0 mm 50×10⁻¹² ---- 2.5 mm 1.5 mm 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_u Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm ---- 1.0 mm 0.0 mm – 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm ---- 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ t_{oc}= 2.5 mm t_{oc} = 2.5 mm 0.85 0.85 0 1 2 ν_u Energy (GeV) 5 5 \overline{v}_{u} Energy (GeV) L = 1.5 m, f_h = 0.5 (half solid) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.5 mm 50×10⁻¹² 2.0 mm — 2.5 mm 1.5 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm – 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ t_{oc}= 2.5 mm t_{oc} = 2.5 mm 0.85 0 0.85 1 2 5 5 6 ν_u Energy (GeV) L = 1.5 m, f_h = 1.0 (fin edge) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 50×10⁻¹² — 2.5 mm 1.5 mm 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_u Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm – 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ t_{oc} = 2.5 mm t_{oc} = 2.5 mm 0.85 0 0.85 1 2 5 5 6 ν_u Energy (GeV) L = 1.8 m, f_h = 0 (solid fins) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 1.0 mm 50×10⁻¹² —— 2.5 mm 1.5 mm 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm - 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ Unosc binned flux ratio wrt nominal t_{oc} = 2.5 mm t_{oc} = 2.5 mm 0.85 0.85 0 1 2 ν_u Energy (GeV) 5 6 5 L = 1.8 m, f_h = 0.5 (half solid) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.5 mm 50×10⁻¹² — 2.5 mm 1.5 mm 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm - 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm — 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ Unosc binned flux ratio wrt nominal t_{oc} = 2.5 mm t_{oc}= 2.5 mm 0.85 0 0.85₀ 1 2 5 5 6 ν_u Energy (GeV) \overline{v}_{u} Energy (GeV) L = 1.8 m, f_h = 1.0 (fin edge) signal mode: v_{μ} (left) & anti- v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 50×10⁻¹² — 2.5 mm 1.5 mm 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 45 40 40 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m 2 / POT 35 30 30 25 25 20 20 15 15 10 10 2 5 \overline{v}_{μ} Energy (GeV) v_u Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm - 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.1 1.1 $t_{oc} = 0 \text{ mm}$ $t_{oc} = 0 \text{ mm}$ Unosc binned flux ratio wrt nominal t_{oc} = 2.5 mm t_{oc} = 2.5 mm 0.85 0 0.85 1 2 ν_u Energy (GeV) 5 6 5 L = 1.5 m, f_h = 0 (solid fins) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm - 0.5 mm --- 1.0 mm 0.0 mm 8×10⁻¹² 8×10⁻¹² 2.0 mm --- 2.5 mm 1.5 mm 2.0 mm — 2.5 mm 1.5 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) \overline{v}_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm ---- 1.0 mm 0.0 mm – 0.5 mm — 1.0 mm 1.5 mm 2.0 mm ---- 2.5 mm 1.5 mm 2.0 mm —— 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 Unosc binned flux ratio wrt nominal 1.02 0.96 0.96 0.94 0.92 0.92 2 3 ν_u Energy (GeV) 2 3 ⊽_ແ Energy (GeV) 5 6 L = 1.5 m, f_h = 0.5 (half solid) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.0 mm 8×10⁻¹² 8×10⁻¹² 2.0 mm — 2.5 mm 1.5 mm _ 2.0 mm - 2.5 mm 1.5 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) ⊽, Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm — 0.5 mm — 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm —— 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 96 0.92 0.92 2 3 ν_u Energy (GeV) 2 3 ⊽_ແ Energy (GeV) 5 6 L = 1.5 m, f_h = 1.0 (fin edge) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.0 mm 8×10⁻¹² —— 2.5 mm 1.5 mm - 2.5 mm 1.5 mm 2.0 mm – 2.0 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) \overline{v}_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm — 0.5 mm — 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm — 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 96 0.92 0.92 2 5 2 3 5 6 3 \overline{v}_{u} Energy (GeV) ν_u Energy (GeV) L = 1.8 m, f_h = 0 (solid fins) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm ___ 1.0 mm 0.0 mm 8×10⁻¹² —— 2.5 mm - 2.0 mm 2.0 mm 1.5 mm — 2.5 mm 1.5 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) \overline{v}_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm – 0.5 mm — 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm —— 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 96 0.92 0.92 2 3 ν_u Energy (GeV) 2 3 ⊽_ແ Energy (GeV) 5 6 L = 1.8 m, f_h = 0.5 (half solid) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm ___ 1.0 mm 0.0 mm 8×10⁻¹² _ 2.0 mm 2.0 mm — 2.5 mm 1.5 mm - 2.5 mm 1.5 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) \overline{v}_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm — 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm —— 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 Unosc binned flux ratio wrt nominal 86.0 86.0 86.0 86.0 0.92 0.92 2 3 ν_u Energy (GeV) 2 3 ⊽_ແ Energy (GeV) 5 6 L = 1.8 m, f_h = 1.0 (fin edge) wrong sign bkg: anti- v_{μ} (left) & v_{μ} (right) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm 0.5 mm ___ 1.0 mm 0.0 mm 8×10⁻¹² 2.0 mm — 2.5 mm 1.5 mm - 2.5 mm 1.5 mm – 2.0 mm 6 6 Unosc $\overline{v}_{\mu}s$ / GeV / m² / POT Unosc $v_{\mu}s$ / GeV / m² / POT 5 6 2 5 ν_u Energy (GeV) \overline{v}_{μ} Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm — 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm —— 2.5 mm 1.04 1.04 Unosc binned flux ratio wrt nominal 6.0 86.0 86.0 86.0 0.92 0.92 2 5 2 3 5 6 3 \overline{v}_{u} Energy (GeV) ν_u Energy (GeV) **CP sensitivity** for L = 1.5 m, t_{oc} = 1 mm (solid fins) 3.5 v + 3.5 anti-v run years, 1.2 MW, 1.1x10²¹ POT/year ### CP sensitivities (75% $\delta_{\rm CP}$ range, 3.5+3.5 run yrs, 1.2 MW) ### CP sensitivities (75% $\delta_{\rm CP}$ range, 15+15 run yrs, 1.2 MW) #### CP sensitivity vs exposure (solid support fins) 1.2 MW, 40kt far detector, 56% run efficiency; 1 run year = 204.5 calendar days detector mass (40 kt) x run time #### Extra run days per year to match L = 1.5 m, CP $\sigma = 1.85$ #### Extra run days per year to match L = 1.5 m, CP $\sigma = 3.0$ #### Extra run days per year to match L = 1.8 m, CP $\sigma = 1.85$ #### Extra run days per year to match L = 1.8 m, CP $\sigma = 3.0$ ## Summary - Investigated physics performance, varying: - outer container thickness (0 to 2.5 mm in 0.5 mm steps): dominant effect - target support fin material (solid, half-solid or 2 mm edge): small changes - Performance gets worse as outer container thickness increases - More transverse material to scatter π away from horn focusing trajectories - All π have to pass through the container (or the DS beam window) - Need outer container thickness as thin as practicable (within engineering constraints) - 3 to 1 to 0.7 mm taper is probably a good compromise (approx equivalent to $t_{oc} = 1$ mm) - Small performance changes with material fraction for ~1 mm thick target support fins (±45, ±135 deg) - Only π trajectories near these angles are affected (within approx ±1 deg arc span) - Slightly better performance with less material: introduce holes along the fins (also good for cooling) - Increasing container thickness $t_{\rm OC}$ from 1 to 2.5 mm: - Binned signal neutrino flux spectrum decreases by 5% to 10% (E_v = 2 to 4 GeV) - Wrong sign backgrounds change by ~±2%, sometimes more - CP sensitivity (1.2 MW, 40 kt far detector) vs outer container thickness toc: linear dependence - L = 1.8 m with t_{oc} = 2 2.5 mm equivalent to L = 1.5 m with t_{oc} = 1 mm (CP σ = 1.85 3.00) L = 1.5 m, f_h = 0 (solid fins) v_e bkg: v_μ (left) & anti- v_μ (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm --- 1.0 mm 0.0 mm 0.7×10⁻¹² 2.0 mm ---- 2.5 mm 1.5 mm - 2.5 mm 1.5 mm 2.0 mm 0.6 0.6 Unosc $\overline{v}_e s$ / GeV / m² / POT Unosc $v_e s$ / GeV / m² / POT 0.5 0.3 0.3 0.1 0.1 5 6 2 5 \overline{v}_e Energy (GeV) ve Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm ---- 1.0 mm 0.0 mm — 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm --- 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 Unosc binned flux ratio wrt nominal 6.0 co. 1 co. 1.1 co. 50 Unosc binned flux ratio wrt nominal 0.85 0.85 5 2 3 \overline{v}_e Energy (GeV) 2 3 ν_e Energy (GeV) 1 5 L = 1.5 m, f_h = 1 (fin edge) v_e bkg: v_μ (left) & anti- v_μ (right) running L = 1.8 m, f_h = 0 (solid fins) v_e bkg: v_μ (left) & anti- v_μ (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm — 1.0 mm 0.0 mm 0.5 mm 0.7×10⁻¹² 0.7×10⁻¹² —— 2.5 mm 1.5 mm - 2.5 mm 1.5 mm 2.0 mm 2.0 mm 0.6 0.6 Unosc $\overline{v}_e s$ / GeV / m² / POT Unosc $v_e s$ / GeV / m² / POT 0.5 0.4 0.3 0.3 0.1 0.1 5 6 2 5 \overline{v}_e Energy (GeV) ve Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.5 mm 0.0 mm — 1.0 mm 0.0 mm — 0.5 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 Unosc binned flux ratio wrt nominal 6.0 co. 1 co. 1.1 co. 50 0.85 0.85 2 3 \overline{v}_e Energy (GeV) 2 3 ∨_e Energy (GeV) 5 6 L = 1.8 m, f_h = 1 (fin edge) v_e bkg: v_μ (left) & anti- v_μ (right) running L = 1.5 m, f_h = 0 (solid fins) anti- v_e bkg: v_μ (left) & anti- v_μ (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm - 0.5 mm --- 1.0 mm 0.0 mm 1.0 mm <u>×1</u>0⁻¹² ×10⁻¹² --- 2.5 mm 1.5 mm _ 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 0.12 0.12 0.1 0. Unosc √es / GeV / m² / POT 00 90'0 90'0 80'0 Unosc v_es / GeV / m² / POT 90.0 90.0 90.0 0.02 0.02 5 6 2 4 5 ν_e Energy (GeV) v̄_e Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm – 0.5 mm 0.0 mm 0.5 mm ---- 1.0 mm 0.0 mm ___ 1.0 mm 1.5 mm 2.0 mm --- 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 0.85 0.85 0.8 2 5 2 3 5 6 1 3 ⊽_e Energy (GeV) ve Energy (GeV) L = 1.5 m, f_h = 1 (fin edge) anti- v_e bkg: v_{μ} (left) & anti- v_{μ} (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.0 mm 0.5 mm <u>×1</u>0⁻¹² ×10⁻¹² —— 2.5 mm - 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 1.5 mm 0.12 0.12 0. Unosc v_es / GeV / m² / POT 90.0 90.0 90.0 Unosc √es / GeV / m² / POT 00 90'0 90'0 80'0 0.02 0.02 5 6 2 4 5 ν_e Energy (GeV) v̄_e Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm - 0.5 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 Unosc binned flux ratio wrt nominal 0.95 0.9 0.85 0.85 2 5 2 3 5 6 1 3 \overline{v}_e Energy (GeV) ve Energy (GeV) L = 1.8 m, f_h = 0 (solid fins) anti- v_e bkg: v_μ (left) & anti- v_μ (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm — 1.0 mm 0.0 mm 1.0 mm 0.5 mm <u>×1</u>0⁻¹² ×10⁻¹² —— 2.5 mm 1.5 mm _ 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 0.12 0.12 0.1 Unosc √es / GeV / m² / POT 00 90'0 90'0 80'0 Unosc v_es / GeV / m² / POT 90.0 90.0 90.0 0.02 0.02 5 6 2 4 5 ν_e Energy (GeV) v̄_e Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm - 0.5 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm ___ 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 Unosc binned flux ratio wrt nominal 6.0 co. 1 co. 1.1 co. 50 0.85 0.85 2 3 ν_e Energy (GeV) 2 3 ⊽_e Energy (GeV) 1 5 6 L = 1.8 m, f_h = 1 (fin edge) anti- v_e bkg: v_{μ} (left) & anti- v_{μ} (right) running Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm 0.0 mm ___ 1.0 mm 0.0 mm 0.5 mm <u>×1</u>0⁻¹² <u>×1</u>0⁻¹² —— 2.5 mm 1.5 mm - 2.0 mm - 2.5 mm 1.5 mm 2.0 mm 0.12 0.12 0.1 Unosc √es / GeV / m² / POT 00 90'0 90'0 80'0 Unosc v_es / GeV / m² / POT 90.0 90.0 90.0 0.02 0.02 5 6 2 4 5 ν_e Energy (GeV) v̄_e Energy (GeV) Container thickness Nominal: 3,1,0.7 mm Container thickness Nominal: 3,1,0.7 mm - 0.5 mm 0.0 mm 0.5 mm — 1.0 mm 0.0 mm — 1.0 mm 1.5 mm 2.0 mm —— 2.5 mm 1.5 mm 2.0 mm – 2.5 mm 1.2 1.2 1.15 1.15 Unosc binned flux ratio wrt nominal 6.0 co. 1 co. 50 co. 6.0 c 0.85 0.85 2 5 2 3 5 6 1 3 ⊽_e Energy (GeV) 40 ν_e Energy (GeV)