

A possibility to simulate DUNE near detector in LArSoft

Tingjun Yang LArSoft Coordination Meeting 06/28/22

Introduction

- The DUNE near detector system consists of several components
 - LArTPC (ArgonCube)
 - Muon spectrometer (TMS, GArTPC)
 - SAND
- Currently the near detector is simulated using standalone genie, <u>edep-sim</u> (Geant4) and python-based detector simulation.
- I have explored the possibility to simulate DUNE near detector in larsoft
 - It may be beneficial to simulate both near and far detectors in the same framework
 - It is an opportunity to make larsoft more flexible and support more detectors
- I got a lot of help and had a lot of useful discussions with many people
 - LArSoft team: Erica Snider, Kyle Knoepfel, Robert Hatcher, Hans Wenzel, Gianluca Petrillo, Lynn Garren, et al.
 - My DUNE colleagues: Jeffrey Kleykamp, Laura Fields, Chris Backhouse, Tom Junk, Dan Dwyer, Peter Madigan, Matt Muether, Andy Mastbaum, Pedro Ochoa-Ricoux, et al.

DUNE near detector

- Use a version of gdml file that consists of 3 sensitive volumes: volMuonTaggerPlane, volTPCActive, and scinBoxlvTMS.
- Visualization of detector components using <u>CaTS</u>.

Neutrino simulation in LArSoft

- Event generator:
 - <u>GENIEGen module.cc</u> a larsoft module to simulate neutrino interactions in a LArTPC
 - <u>GENIEHelper</u> a generator interface to art for GENIE
- Geant4 detector simulation
 - <u>Larg4</u> refactored Geant4 simulation
- In principle we can use those two tools to simulate neutrino interactions and particle propagation in any detectors.
 - A few issues identified and resolved.

GDML elements

• The version of ND gdml file defines the element "zinc"

```
<isotope name="zinc64" Z="30" N="64">
<atom type="A" value="63.93"/>
</isotope>
<element name="zinc">
<fraction ref="zinc64" n="1.0"/>
</element>
```

- As Robert pointed out, this clashes with ROOT's GDML parser and ROOT's internal pre-defined materials definitions.
- A simple solution is to change "zinc" to "zincElement64" in a few places in the gdml file.

GENIEGen_module

- In this producer module, there is a lot of analysis code to save histograms (e.g. distribution of neutrino vertices).
- One piece of code can cause trouble for non-LArTPC detectors:

art::ServiceHandle<geo::Geometry const> geo; double x = 2.1*geo->DetHalfWidth(); double y = 2.1*geo->DetHalfHeight(); double z = 2.*geo->DetLength();

- Solution: if variable fDefinedVtxHistRange is true, do not call geometry service.
 - Ideally the analysis code should be moved to an analyzer module.
- <u>PR</u> submitted and merged.
- Thanks to Robert for pointing this problem out.

LArSoft Geometry

 The LArSoft geometry system has a required hierarchy of components:

https://larsoft.org/importantconcepts-in-larsoft/geometry/

- The ND gdml file does not follow this hierarchy and naming scheme, even for the LArTPC component.
- There was an issue if LArSoft finds 1 cryostat but no TPC.
- Gianluca fixed this issue. Details in this redmine issue.

GENIE simulation

- After fixing several issues, it is straightforward to run GENIE simulation in LArSoft
 - Flux files in dk2nu format (thanks Laura Fields)
 - Flux xml file defining beam position/direction/window.
 - Fcl parameters defining top volume, FiducialCut, POT per spill, etc.
- I defined a beam window 10x6 m² in front of the muon trigger.
- I defined a FiducialCut of 10x6x8 m³ for neutrino interactions.
- TopVolume is set to volWorld.

Larg4 simulation

 Hans provided instructions to modify the gdml file to be compatible with the larg4 simulation:

3451	3466	<volume name="volTPCActive"></volume>
3452	3467	<materialref ref="LAr"></materialref>
3453	3468	<pre><solidref ref="TPCActive_shape"></solidref></pre>
3454		<pre>- <auxiliary auxtype="SensDet" auxvalue="TPCActive_shape"></auxiliary></pre>
	3469	<pre>+ <auxiliary auxtype="SensDet" auxvalue="SimEnergyDeposit"></auxiliary></pre>
	3470	+ <colorref ref="magenta"></colorref>
	3471	<pre>+ <auxiliary auxtype="StepLimit" auxunit="mm" auxvalue="0.4"></auxiliary></pre>
	3472	<pre>+ <auxiliary auxtype="Solid" auxvalue="True"></auxiliary></pre>
3455	3473	<auxiliary auxtype="EField" auxvalue="(500.0 V/cm, 0.0 V/cm, 0.0 V/cm)"></auxiliary>
3456	3474	

- Key word: SimEnergyDeposit
- StepLimit is set to 0.4 mm.

Output format <u>SimEnergyDeposit.h</u>

185		int	numPhotons;	///< of scintillation photons
186	//	int	numFPhotons;	///< of fast scintillation photons
187	//	int	numSPhotons;	///< of slow scintillation photons
188		int	numElectrons;	///< of ionization electrons
189		float	scintYieldRati	o; ///< scintillation yield of LAr
190		float	edep;	///< energy deposition (MeV)
191		<pre>geo::Point_t</pre>	<pre>startPos;</pre>	///< positions in (cm)
192		<pre>geo::Point_t</pre>	endPos;	
193		double	<pre>startTime;</pre>	///< (ns)
194		double	endTime;	///< (ns)
195		int	trackID;	///< simulation track id
196		int	pdgCode;	///< pdg code of particle to avoid lookup by particle type later

One simulated neutrino event

PROCESS NAME	MODULE LABEL	PRODUCT INSTANCE NAME	DATA PRODUCT TYPE	SIZE
GenieGen	generator		std::vector <simb::gtruth></simb::gtruth>	1
GenieGen	TriggerResults		art::TriggerResults	1
GenieGen	generator		std::vector <sim::beamgateinfo> </sim::beamgateinfo>	1
GenieGen	generator		std::vector <simb::mctruth> </simb::mctruth>	1
GenieGen	generator		art::Assns <simb::mctruth,simb::mcflux,void></simb::mctruth,simb::mcflux,void>	1
GenieGen	generator		std::vector <simb::mcflux> </simb::mcflux>	1
GenieGen	generator		art::Assns <simb::mctruth,simb::gtruth,void></simb::mctruth,simb::gtruth,void>	1
G4	TriggerResults		art::TriggerResults	1
G4	largeant		std::vector <simb::mcparticle> </simb::mcparticle>	.551
G4	largeant	LArG4DetectorServicevolMuonTaggerPlane	std::vector <sim::simenergydeposit> </sim::simenergydeposit>	0
G4	largeant	LArG4DetectorServicevolTPCActive	std::vector <sim::simenergydeposit> </sim::simenergydeposit>	9028
G4	largeant		std::map <int,std::set<int> ></int,std::set<int>	0
G4	largeant		art::Assns <simb::mctruth,simb::mcparticle,sim::generatedparticleinfo> </simb::mctruth,simb::mcparticle,sim::generatedparticleinfo>	.551
G4	largeant	LArG4DetectorServicescinBoxlvTMS	std::vector <sim::simenergydeposit></sim::simenergydeposit>	1644

 $\nu_{\mu} [2.6 \text{ GeV/c}] + {}^{40}\text{Ar} \rightarrow \mu [2.2 \text{ GeV/c}] + p [0.8 \text{ GeV/c}] (QE)$

 $\nu_{\mu} [2.6 \text{ GeV/c}] + {}^{40}\text{Ar} \rightarrow \mu [2.2 \text{ GeV/c}] + p [0.8 \text{ GeV/c}] (QE)$

True Geant4 trajectory

True energy deposition

🛠 Fermilab

- Chris Backhouse tweaked webevd to display simulated neutrino interactions.
 - Currently it does not fully support ND (expecting the same larsoft geometry hierarchy).
 - It would be nice to at least show detector layouts.

SimEnergyDeposit

- Ran 1000 single neutrino simulation.
- Energy depositions in three sensitive volumes.
- 7x5 LArTPC modules

11

6/28/22

- Each has two drift volumes
- TMS is lower than LArTPC
 - Beam angle is -0.101 rad.
- File sizes: after genie 2.5 MB, after larg4 805 MB

🚰 Fermilab

A simulated spill

Conclusions

- We have demonstrated the capability to simulate DUNE near detector (GENIE+Geant4) in LArSoft.
- Drift and electronics simulation is challenging because of the large number of channels.
 - Currently this is done by the DUNE ND group using highlyparallelized algorithms implemented on the CUDA architecture (<u>https://github.com/DUNE/larnd-sim</u>)
- It may be possible to take advantage of multi-threading/ML to accelerate the drift/electronics in LArSoft.
 - The is also a necessary step to separate channel readout from geometry description in LArSoft – currently under discussion.

