SULI, SUMMER 2022

(Si)

TES DETECTORS FOR DARK MATTER **PARTICLE DETECTION**

TATHAGATA BANERJEE

HEP Division, Argonne National Laboratory University of Illinois Urbana-Champaign

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

August 2nd 2022 Lemont, IL

INTRODUCTION SPICE/HeRALD Project

The SPICE/HeRALD projects aim to detect sub-GeV dark matter particles, with detector sensitivities in the meV to eV range

SPICE

- Uses Sapphire (AI_2O_3) and GaAs crystals as detection targets
- Optimal for electron recoils which produce phonons and photons

HeRALD

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

- Uses superfluid Helium as target
- Optimal for nuclear recoils which produce excimers, photons, phonons/rotons, and evaporated He atoms
- Both use TES detectors to detect these particles

TRANSITION-EDGE SENSOR: PRINCIPLES

- TESs are superconductors that have strong temperature-dependent resistance during phase transition
- They generally have low critical temperatures (<1K) for high energy resolution
- Absorption of energy in transition region results in negative electrothermal feedback under a voltage bias
 - Increase in resistance
 - Decrease in TES current
 - Decrease in Joule power
- TES measurements are conducted using ultra-sensitive SQUID amplifiers

PARAMETERS OF INTEREST

- Critical Temperature (T_c) Superconducting transition temperature
- Normal Resistance (R_n) Resistance in non-superconducting regime
- Detector thermal performance, $P = K(T_c^n T_b^n)$
 - n: exponent, generally ~5
 - K: Thermal coupling strength
- Detector energy resolution,

nne National Laboratory is a

U.S. Department of Energy laborator

$$\Delta E \approx 2.35 \sqrt{\frac{k_B T_C^2 C}{\alpha}} \sqrt{\frac{n}{2}}, \ \alpha = \frac{T}{R} \frac{dR}{dT} |_{T=T_c}$$

DETECTOR MEASUREMENT AND ANALYSIS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

DETECTOR DESIGNS

- 4 detectors with same bilayer recipe: Ir30nm/Pt12nm, with AI leads
- 3 detectors for volume effect: 1:3 ratio, 100 μm, 50 μm and 25 μm lengths
- I detector for structure effect: 5 µm stripes with 5 µm gap

RESISTANCE VS TEMPERATURE CURVES

- 100 µm and striped detector have expected T_c and sharp transition profile
- = 50 μ m detector has lower T_c and broader transition
- 25 µm detector did not show any transition

Detector	R _n	T _c
100 µm	1.20 Ω	42.5 mK
50 µm	1.25 Ω	31.0 mK
25 µm	1.30 Ω	-
Striped	0.70 Ω	45.2 mK

THERMAL PERFORMANCE OF 100 µm DETECTOR

- IV curves were measured to understand thermal performance of TES detector
- Power law fit in PT curve $P = K(T_c^n - T_b^n)$

THERMAL PERFORMANCE OF STRIPED DETECTOR

- IV curves were measured to understand thermal performance of TES detector
- Power law fit in PT curve $P = K(T_c^n - T_b^n)$

THERMAL PERFORMANCE OF 50 µm DETECTOR

- IV curves were measured to understand thermal performance of TES detector
- Smaller saturation power due to smaller volume of TES
- Joule heating power is non-linear due to broad transition
- Noise in 50 µm PT curve due to channel coupling with environment
 - Not sensitivity of device

SINGLE PARTICLE DETECTION?

- We have functioning TES detectors
- Single photon source needed to characterize detectors further
 - Detector calibration
 - Detection threshold
- Therefore, setup needs to be enhanced to conduct single photon source measurements

SINGLE PHOTON SOURCE SETUP (SPS)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SPS PRINCIPLE

- SPS have antibunched photons
- We use an attenuated laser beam
 - Reduces intensity and photon count per pulse through high attenuation
- Not strictly SPS, finite probability of multiphoton emission
 - Low cost, easily available, easy to set up

DESIGN FLOWCHART

COMPONENT DESIGNS

Lens mount

Fiber termination

Perspective view

Current setup structure

CONCLUSIONS

- Tested a batch of low-T_c TES detectors made of Ir/Pt bilayer
 - RT dependence, transition temperature
 - TES thermal performance
 - Size effect on sensitivity of DM detectors
 - Striped design does not significantly change properties of DM detectors
- Single photon source setup is needed to characterize detectors fully
 - Designed necessary components of the setup
 - Currently developing the new setup to expand measurement capabilities

REFERENCES

SnowMass2021 Letter of Interest, TESSERACT Dark Matter Project.

https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1_CF2-IF1_IF8-120.pdf

 Irwin, K. D. and Hilton, G. C. Cryogenic Particle Detection (Springer, Berlin, Heidelberg, 2005), pg 63-150

THANK YOU

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

