Low-Energy Physics Opportunities with DUNE

Dan Pershey Snowmass CSS Jul 19, 2022

The Deep Underground Neutrino Experiment

- Large, 40 kton (fiducial) mass with 4300 mwe overburdern makes DUNE ideal for searching for rare astroparticle phenomena
 - Assume in this talk a DUNE with four liquid argon TPC modules
- DUNE will further constrain neutrino oscillation parameters including the CP-violating phase angle
 - Measured using a high-purity $v_{\mu}/\overline{v}_{\mu}$ beam produced at Fermilab

Focus on low-energy physics

Astroparticle events in underground detectors

- As DUNE is an underground experiment, potential for astroparticle measurements spanning several orders of magnitude of energy and event rate
- Understanding the < 100 MeV-scale astrophysical neutrino flux a primary physics driver for the DUNE experiment

A core-collapse supernova

When a star collapses, it releases its gravitational binding energy (~10⁵³ ergs)

- as neutrinos (99%)
- as light (0.01%)
- as KE of ejected matter (1%)

u Burst of neutrinos lasts \approx 10 seconds

- □ 1-3 such events in our galaxy per century
- A single event would teach us:
- Astrophysics
 - Core-collapse mechanism, neutronization rate, neutrino diffusion, black hole formation, nuclear density in neutron star

Particle physics

 Neutrino magnetic moment, absolute mass, oscillations, sterile neutrinos

A burst of neutrinos was observed in supernova 1987a, associated with the death of a star in the Large Magellanic Cloud

 \approx 20 $\bar{\nu}_e$ interactions between Kamiokande, IMB, and Baksan

Neutrinos emission in a supernova

After a heavy star exhausts its supply of fusible nuclei within its core, it releases neutrinos in three discernable epochs during a supernova

- 1. Neutronization through electron capture in the core gives a shortlived, intense flash of v_e
- 2. Neutrino production then dominated by matter falling into the core
- 3. Emission then slowly cools as neutrinos diffuse

DUNE expects to see several thousand events from a galactic supernova to test time/energy profiles

Goal: determine the neutrino flux

- We observe a flux depending on three variables – energy, time, and flavor
- Beyond precise reconstruction of kinematics, we must probe all flavors to fully understand the core collapse
 - v_e observe neutronization
 - $v_e + \bar{v}_e$ CC good for calorimetry
 - v_x NC no oscillation ambiguity

DUNE uniquely sensitive to v_e component!

	$ u_e$	$\bar{\nu}_e$	ν_{χ}	
DUNE	89%	4%	7%	
SK ¹	10%	87%	3%	
JUNO ²	1%	72%	27%	
¹ Super-Kamiokande, <i>Astropart. Phys.</i> 81 39-48 (2016) ² Lu, Li, and Zhou, <i>Phys Rev. D</i> 94 023006 (2016)				

Ci N

Duke

Interaction channels in argon

Charged current interactions on Ar sensitive only to v_{ρ} flux $v_e + {}^{40}Ar \rightarrow e^- + {}^{40}K^* = E_v > 1.5 \text{ MeV}$ $\bar{\nu}_e + {}^{40}Ar \rightarrow e^+ + {}^{40}Cl^* = E_v > 7.5 \text{ MeV}$ Neutral current interactions on Ar $\frac{\nu_{\chi} + {}^{40}Ar \rightarrow \nu_{\chi} + {}^{40}Ar^*}{\bar{\nu}_{\chi} + {}^{40}Ar \rightarrow \bar{\nu}_{\chi} + {}^{40}Ar^*} \right| E_{\nu} > 1.5 \text{ MeV}$ Neutrino scattering off electrons $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^ \bar{\nu}_{\chi} + e^- \rightarrow \bar{\nu}_{\chi} + e^-$

Sub-cm spatial resolution allows for event-by-event categorization by interaction type NC events create a cloud of deexcitation gamma blips CC events give an electron in a deexcitation cloud ν -e scatters produce a lone electron pointing away from the supernova

Supernova events at DUNE

□ For a typical galactic supernova (originating 10 kpc away), we expect ≈4000 neutrinos in 40 kton of argon

Channel	Events "GKVM" model
$\nu_e + {}^{40} \mathrm{Ar} \to e^- + {}^{40} \mathrm{K}^*$	3350
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \rightarrow e^+ + {}^{40}\operatorname{Cl}^*$	160
$\nu_x + e^- \rightarrow \nu_x + e^-$	260
Total	3770

Most sensitive to the v_e flux Unique aspect of argon detectors!

But there are large theoretical uncertainties on the total rate Solid: Garching model¹

Would see few thousand events from galactic star or several dozen events from the LMC for efficient triggering

Andromeda supernova would produce \approx 1 event

¹Huedepol, Müller, Janka, Marek, and Raffelt, *Phys. Rev. Lett.* **104** 251101 (2010)

8 Jul 19, 2022 D. Pershey | Low-Energy Physics Opportunities with DUNE

Expected spectrum of events

- □ We are most sensitive to the v_e CC interaction but we will observe others
 - Unique to DUNE, other detectors largely sensitive to anti- v_e from IBD
- We can further exploit the reconstruction capabilities of the DUNE TPC to separate the flavors

Isolating interaction channels in DUNE

Precision tracking of particles in TPC

- Electron track visible in CC and ES
- Comptons from deexcitation gammas show up as small blips surrounding electron track
- Can discriminate between channels based on deexcitation gammas

Machine learning to tag channels

Dine

Duke

Predicting supernova direction with DUNE

1987 supernova, Anglo-Australian Observatory

- Studying the light signal from the supernova also interesting from the beginning of the collapse through several months after explosion
- □ The neutrino burst arrives at Earth ≈hour before light so we can warn optical astronomers of an event and indicate source location
 - Neutrino signal facilitates multi-messenger study of supernovae

Pinpointing a supernova with DUNE data

- Simulated supernova at 10 kpc with the Garching model
 260 v − e scattering events
 Low-Q² → great pointing
 3350 v_e CC events
 - \approx isotropic

- TPC allows flavor discrimination so the v_e CC component can be mitigated
- Exploiting the directionality of νe scattering events, we can determine the direction of the supernova to \approx 4.5 deg

Observing the neutronization burst

□ An intense flux v_e of is produced from neutronization early in the collapse – DUNE can uniquely search for this peak due to dominant v_e CC sensitivity

 \Box But, the v_e content from neutronization depends on several unknowns

- Neutrino mass ordering
- Collective oscillations from ν - ν scattering
- Underlying model physics uncertainties in core collapse

Observing neutrino flux with multiple flavors is only way to probe physics

Detecting black hole formation

- The neutrino signal can discriminate between neutron star and black hole forming supernova
- During black hole formation, an event horizon is created about 0.5s after the start of the collapse quickly quenching the neutrino flux
- Subsequent tail of neutrino flux arising from neutrino scattering between source and Earth

Testing astrophysical models with ν spectrum

- Energy transport models in supernovae give a wide range of predicted neutrino spectra observed by DUNE
- General "pinched thermal flux" shape is sufficient to describe flux predicted by these models

$$\phi(E_{\nu}) = \mathcal{N}\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-\left(\alpha + 1\right)\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right] \qquad \begin{bmatrix} \text{Different for each} \\ \text{flavor} - \text{DUNE} \\ \text{needed to test } \nu_{e}! \end{bmatrix}$$

- DUNE can constrain the three relevant parameters
- Provides a test of these supernova transport models
- A measurement at 10 kpc would constrain current models
 - Current understanding of neutrino scattering model limits constraint – theory and experimental input needed

Neutrinos produced in solar fusion

- The sun produces a large flux of neutrinos which may interact in DUNE
- Dominant interaction channel is CC
- Threshold set by large background rate at several MeV
- ⁸B and hep fluxes are observable

CC channel dominates signal: leaves a ≈ 10 MeV electron and gamma cascade in detector

Reconstructing solar neutrinos

Reconstruct events calorimetrically – sum all energy deposited in electron track and gamma cascade blips

- PDS gives t₀ for electron lifetime correction and fiducialization
- We achieve 9-12% resolution on neutrino energy throughout the solar energy range

Solar neutrinos in DUNE

□ Solar ⁸B + hep flux is enormous – several tagged events / day / kt

But also huge background rate, we need to understand what energy range to study

Neutron capture drowns events below 9 MeV

Bkg	Rate
⁴⁰ Ar(n,γ)	44 / t-yr
³⁶ Ar(n,γ)	0.62 / t-yr
⁴⁰ Ar(α,γ)	0.051 / t-yr

Solar neutrinos in DUNE

□ Solar ⁸B + hep flux is enormous – several tagged events / day / kt

But also huge background rate, we need to understand what energy range to study

Neutron capture drowns events below 9 MeV

Bkg	Rate
⁴⁰ Ar(n,γ)	44 / t-yr
³⁶ Ar(n,γ)	0.62 / t-yr
⁴⁰ Ar(α,γ)	0.051 / t-yr

DUNE will measure the yet-unobserved hep flux

- ³He + p fusion
- Low flux, high energy

5σ discovery within first 20 kt-yrs of exposure

Future sensitivity to solar oscillations

□ DUNE has favorable sensitivity for measuring Δm_{21}^2 from day/night effect – a partial regeneration of the v_e flux due to matter effects in Earth

• With these parameters, DUNE will measure all neutrino mixing parameters

May push current tension between SK/SNO and KamLAND to 5σ

DUNE working to publish our own sensitivity calculation

Future topics for DUNE engagement

Diffuse supernova neutrinos

- Galactic supernovae: huge event rate but r
- Can search for steady stream of neutrinos produced by high rate of far-off supernova
- Meager but unique sensitivity to v_e flux

"CEvNS glow" from supernova neutrinos

- CEvNS low energy but huge interaction rate
- Visible from increased PDS activity
- NC process sensitive to v_x !

And searches for new physics and better understanding of astrophysics

- Neutrino properties: neutrino decay, magnetic moment, dark photons ...
- Astrophysics: SASI, properties of quark matter, shock wave ...

Re-imagining DUNE's role in the cosmic frontier

Investment in a DUNE Module of Opportunity would be game-changing for low-energy physics

- Extent of program limited by background rates
 - Rate reduced for LAr TPC by shielding, increased photodetector coverage, fiducialization, and ³⁹Ar depleted argon

Potential for 100-keV thresholds would turn DUNE into a kt-scale powerhouse

- Dark matter searches + angular modulation
- $0\nu\beta\beta$ searches
- Much better resolution of CEvNS glow from reduced ³⁹Ar decay
- Improved solar neutrino measurements

□ All this possible without losing sensitivity to neutrino mixing parameters

Summary

- Beyond precision measurements of neutrino mix parameters, DUNE will provide large datasets of astrophysical neutrinos
- Argon detectors uniquely sensitive to v_e flux whi facilitates studies of physics not accessible with other detection technologies

- Large mass and excellent tracking allows efficient reconstruction and channel selection
- Further understand neutrino properties from solar spectra and oscillations
- Large physics potential early in the experiment's running discovery of hep solar neutrinos and 100s-1000s of events from any galactic supernova with just 10 kt of argon even before arrival of the first beam pulse

