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Open questions in neutrino physics

● What is the neutrino mass ordering?

● Is there leptonic CP violation? 

● Is this picture complete? E.g. >3 
flavors? Non-unitary U

PMNS
, …

● Connected to many interesting 
theoretical questions

Two mass scales

|Δm2| ~2 x 10-3 eV2

Δm2
21

 ~7 x 10-5 eV2

NO
IO
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Long-baseline oscillation experiments
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ν
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→ν

μ

ν
μ
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● Complex inference of oscillation 
probability from measured event rate

● Near detector to constrain neutrino flux 
and cross-section* models/systematics

● Different near and far detector fluxes mean 
uncertainties do not neatly cancel 

● High-fidelity detectors reduce ambiguities 
due to detector smearing

*See K. McFarland’s talk later!
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● L ≈ 1285 km; E
ν
≈ 2.5 GeV (broad band); liquid argon 

time projection chamber (LArTPC)

● Unprecedented intensity neutrino beam (1.2→2.4 MW)

● Near detector system at Fermilab

● 4 x 17 kt LAr far detector modules at SURF

DUNE
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Far Detector (FD)

● 4 x 17 kt LAr modules, minimum 10 kt FV 
each (2 in phase I)

● Full FD1 simulation and reconstruction: 
PRD102, 092003 (2020)

● Four samples in analysis: ν
μ
 & ν

e
                   

in ν and ν enhanced modes

https://arxiv.org/abs/2006.15052
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● 4 x 17 kt LAr modules, minimum 10 kt FV 
each (2 in phase I)

● Full FD1 simulation and reconstruction: 
PRD102, 092003 (2020)

● Four samples in analysis: ν
μ
 & ν

e
                   

in ν and ν enhanced modes

ν-enhanced
100 kt-MW-yr

https://arxiv.org/abs/2006.15052
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Near Detector (ND)

Core requirements:

● Constrain neutrino flux

● Constrain ν/ν-Ar interactions

● Exceed FD energy resolutions

● Tolerate high rate environment
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Near Detector (ND)

Core requirements:

● Constrain neutrino flux

● Constrain ν/ν-Ar interactions

● Exceed FD energy resolutions

● Tolerate high rate environment

Three major components:

1 - Core 67 t LArTPC with pixelated readout

2 - Downstream magnetized tracker
● Early physics with muon range stack
● GArTPC for finer precision in full deployment 

3 - SAND: dedicated beam monitor

 1  1 

 2 

 3 
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Near Detector (ND)

Core requirements:

● Constrain neutrino flux

● Constrain ν/ν-Ar interactions

● Exceed FD energy resolutions

● Tolerate high rate environment

Three major components:

1 - Core 67 t LArTPC with pixelated readout

2 - Downstream magnetized tracker
● Early physics with muon range stack
● GArTPC for finer precision in full deployment 

3 - SAND: dedicated beam monitor
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See D. Cherdack’s talk later!
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Flux prediction Interaction model Oscillations

FD sim + reco

Systematic uncertainties

Fitting framework

Analysis summary

X

Parameterized 
ND sim + reco
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Flux prediction Interaction model Oscillations

FD sim + reco

Systematic uncertainties

Fitting framework

Analysis caveats

X

Parameterized 
ND sim + reco

For the sensitivities results I am about to show:

● Only a single FD module design used

● Parameterized ND reconstruction, only explicitly 
includes on-axis ND-LAr samples 

● Assume that beam monitoring and off-axis data 
avoid need for out of model systematics

● Cross-section modeling uncertainties a very active 
research field* – 2019 efforts are not the full picture 

*See K. McFarland’s talk later!
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Muon (anti)neutrino disappearance

90% confidence
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Electron (anti)neutrino appearance
Sign change
for ν

e
 and ν

e

Interplay between 
mass ordering 
and CP-phase

Spectral 
measurement 

allows DUNE to 
disentangle effects
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DUNE CPV

>5σ discovery potential for >50% of δ
CP

 values

No reliance on other experiments

5σ

E
P

JC
 8 0 (2020 ) 978

 ν-mode

ν-mode
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CPV sensitivity

Fraction of throws that exceed each 1-5σ significance 
threshold as a function of true δ

CP
 for two exposures

NO NO

P
R

D
 10 5 (2022 ) 7, 07 2006
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CPV sensitivity over time

Behaviour as a function of exposure can be 
extracted, here shown for 50% of true δ

CP
 values

Median sensitivity for 50% δ
CP

 values above 3σ 
(5σ) after 197 (646) kt-MW-yr

NO P
R

D
 10 5 (2022 ) 7, 07 2006
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DUNE MO

Unrivaled ability to resolve the mass ordering:
● Regardless of other parameter values
● Without reliance on other experiments

E
P

JC
 8 0 (2020 ) 978
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DUNE MO

Strong MO potential with very short exposures

Probability < 0.01 to prefer the wrong neutrino mass 
ordering after 66 kt-MW-yr

P
R

D
 10 5 (2022 ) 7, 07 2006
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DUNE precision measurements

● 7–16° δ
CP

 resolution, world-leading Δm2-sin2θ
23

● Ultimate sensitivity approaches reactor θ
13

● Constrain all parameters with one experiment 
→ probe unitarity / completeness of the PMNS

E
P

JC
 8 0 (2020 ) 978

NuFit 4.0: JHEP 01 (2019) 106
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Phased DUNE construction
● Construction schedule funding limited:  

– FD late 2020s

– Beam and ND by 2031
● Phase I:

– Ramp up to 1.2 MW beam intensity

– 2x 17 kt LArTPC FD modules

– Near detector: ND-LAr + TMS (movable) 
+ SAND

● Phase II:

– Proton beam 1.2 MW → 2.4 MW

– 4x 17kt LArTPC FD modules

– Full ND complex
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DUNE staging

Phase I:

✔Unambiguous MO

✔ 3σ CPV at maximal δ
CP

Phase II:

✔ P5 goal of 5σ CPV for 50% of δ
CP

✔Precision δ
CP

, Δm2
32

, θ
23

, θ
13

Requires 2.4 MW, 40 kt and full ND

Beam ramp 
schedule
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DUNE oscillation summary

● Unambiguous MO measurement

● Strong CPV discovery potential 

● Precision measurements of key oscillation parameters

● Broad spectral measurements will stress test the U
PMNS

 
model – is anything missing?

● No reliance on constraints from other experiments
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Part of a broader physics program!

Credit: Symmetry Magazine / Sandbox Studio, Chicago

See additional DUNE talks in other sessions!

Credit: Higgstan
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Backup
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● Produce neutrino beam by focusing charged 
pions and allowing them to decay

● Can operate in neutrino and antineutrino 
enhanced modes

● 1.2 MW with planned 2.4 MW upgrade – 
ramp-up schedule under development

Beam
ν-enhanced

ν-enhanced
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Liquid Argon Time Projection Chambers 
(LArTPCs)

● Charged particles ionize 
liquid argon (LAr)

● Uniform electric field 
drifts ionization electrons 
to anode

● Electrons collected and 
readout (wires/pixels)

● Argon produces and is 
transparent to its 
scintillation light
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Why LArTPCs?
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Toy throw study method

● For each toy throw:
● Flux, detector and cross-section systematics thrown 

according to their prefit Gaussian uncertainty
● Oscillation parameters thrown according to the table
● Statistical throw applied
● All parameters are allowed to vary

● All fits use all ND+FD samples, equal ν:ν running, and 
apply a Gaussian penalty to θ

13

*JHEP 01 (2019) 106

*

https://arxiv.org/abs/1811.05487
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NuFit4.0 uncertainties

JHEP 01 (2019) 106 [arXiv:1811.05487]

nu-fit.org/?q=node/177

http://www.nu-fit.org/?q=node/177
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ND samples
(105 t-MW-yr)

FHC ν
μ

RHC ν
μ
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FHC ν
μ

FHC ν
e

FD samples (100 kt-MW-yr)

RHC ν
μ

RHC ν
e
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Feldman-Cousins* (FC)

● Constant Δχ2 breaks down:
● Around physical boundaries
● For cyclic parameters
● If there are degeneracies

● Numerical method for confidence 
intervals with correct coverage

● Fix parameter of interest, throw 
other parameters and statistics

● Build up distribution of: 

● Find the critical value Δχ2
c
 that gives the intended coverage

*G. J. Feldman and R. D. Cousins, PRD 57, 3873 (1998)

NO
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FC-corrected CPV sensitivity

Fraction of throws that exceed each 1-3σ significance 
with and without FC corrections

FC corrections computationally prohibitive above 3σ

NO NO
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FC CPV sensitivity over time

Fraction of throws that exceed 1-3σ for 50% of true 
δ

CP
 values, as a function of exposure, with and without 

FC corrections

NO NO
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Uncertainty on Δχ2
c

Calculated using a bootstrap rethrowing method:

● Treat PDF from n FC throws as the true PDF, and draw B 
independent samples of size n from it (with replacement)

● Calculate the value of interest for each of the B samples, 
and then calculate the standard deviation with:

Additional toys were produced to ensure the uncertainty on 
all Δχ2

c
 values was less than 5%



36

FC vs δ
CP

Δχ2
c
 values as a function of δ

CP
 for 100 and 334 kt-MW-yr

Horizontal lines indicate the constant-Δχ2 equivalent

NO NO
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