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Weak Mixing Physics with DUNE: Structure and Precision

Quarks

  V
ud  

V
us           

V
ub

     V
cd         

V
cs    

Vcb

                        V
td               

V
ts         

V
tb

Leptons

  U
e1    

U
e2         

U
e3

      U
m1             

U
m2       

U
m3

      U
t1              

U
t2       

U
t3

Precision: Sub-percent   CPV: confirmed Precision: Few-percent   CPV: unconfirmed
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Weak Mixing Physics with DUNE: Unitarity and CP-Violation

Quarks Leptons
NuFit5.0, Normal Ordering, Unitarity Imposed
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Requirements for the DUNE Near Detector
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DUNE TDR● Constrain systematic uncertainties at levels consistent 
with FD statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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Phase I Requirements for the DUNE Near Detector
● Constrain systematic uncertainties at levels consistent with FD 

statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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The DUNE ND Complex - Phase I
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ND-LAr Modular TPC (ArgonCube)
● Design

– Same liquid argon target as the DUNE FD
– Modular design: 35 1×1×3 m3 modules with two TPCs per module 

(50 cm drift)
– Charge readout: LArPix pixel readout for direct-to-3D charge 

information
– Light readout: High ( 40%) detector coverage with ns-scale timing ∼

and cm-scale position
● Physics

– High-statistics ν interactions in LAr TPC
– ∼30M accepted νμ CC events/year (FHC / ν mode, 1.2 MW beam)
– Constrain flux via ν+e elastic scattering
– Precise constraints on event rates (flux × cross sections) in LAr
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ArgonCube Event Containment Hadronic Containment Efficiency

Muon 
Containment 
Efficiency

● Constrain systematic uncertainties at levels consistent 
with FD statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection

TMS extends 
longitudinal muon 
containment 
beyond ND-LAr 
length
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ArgonCube CC-νμ Inclusive Samples

Huge rate

Slices of hadronic 
energy fraction

● Constrain systematic uncertainties at levels consistent 
with FD statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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● Constrain systematic uncertainties at levels consistent with FD 
statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection

ArgonCube Constraints (CC-νμ Inc.)

Flux

QE + 2p2h

Res + DIS

Nuclear
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SAND: System for On-Axis Neutrino Detection
● Design

– Fixed on-axis position
– LAr TPC Target + STT + Ecal + solenoid magnet
– Ecal and Magnet repurposed from KLOE Experiment

● Physics
– Continuous monitoring of the on-axis flux: 

● Detailed flux stability on a weekly basis
● Tune flux model as function of time
● Quick response to beamline geometry changes

– STT provides CH and C targets for comparison with world cross section data 
(mostly CH) and H cross sections via subtraction

– Broad physics program beyond neutrino oscillations:
● Cross sections
● Weak mixing angle
● BSM Searches

– Ar events provide ND-LAr cross check

SAND Consortium
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ArgonCube Constraints (CC-νμ Inc.)
SAND Consortium

● Constrain systematic uncertainties at levels consistent 
with FD statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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PRISM
● Design

– System for moving the LAr TPC + tracker up to 30 m 
transverse to the beam direction

– Enables scan of beam at multiple off-axis positions
● Physics

– Beam energy spectrum changes with off-axis position
– Peak energy is reduced; peak width narrows
– Use statistical subtraction to measure cross sections 

in a narrow incoming neutrino energy range
– Better control of hadronic physics with constrained 

incoming neutrino energy
– Direct use of ND data in oscillation analysis: shifts 

cross section uncertainties to flux uncertainties
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PRISM
● Design

– System for moving the LAr TPC + tracker up to 30 m 
transverse to the beam direction

– Enables scan of beam at multiple off-axis positions
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– Beam energy spectrum changes with off-axis position
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– Use statistical subtraction to measure cross sections 
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PRISM: Express 
Osc. Prob. as 
ND Flux Weights
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PRISM: Express 
Osc. Prob. as 
ND Flux Weights
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Start with:
Oscillation hypothesis, 
P(E

ν
) expressed as 

position weights C(x) 
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Event Spectrum Only uses MC 

flux prediction

No cross section 
model required!
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PRISM
● Constrain systematic uncertainties at levels consistent with FD 

statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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Improved Systematics: Phase I → Phase II

● Phase II required to push CPV sensitivity 
above 5σ for 50% of δCP values

● Flux and FD functionally doubled increasing 
FD event rate by 4

● Upgrade required to enable high-precision 
physics goals, especially for δCP

● ND Upgrade: Lower thresholds, higher 
resolution, “missing energy” detection 
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Improved Systematics: Phase I → Phase II

● Phase II requires 3 major upgrades
– Double beam intensity
– Double effective far detector mass
– Improve ND complex to keep pace with systematics

● Upgrade required to enable high-precision 
physics goals, especially for δCP

● ND Upgrade: Lower thresholds, higher 
resolution, “missing energy” detection 
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The DUNE ND Complex - Phase II

SANDSAND
System for On-Axis System for On-Axis 
Neutrino DetectionNeutrino Detection

MCNDMCND
¿¿Magnetized Gaseous Magnetized Gaseous 

Argon TPC?Argon TPC?

ND-LArND-LAr
Modular Liquid Modular Liquid 

Argon TPCArgon TPC

PRISMPRISM
30m Off-Axis Mobility for 30m Off-Axis Mobility for 

LAr + SpectrometerLAr + Spectrometer

60 meters 
underground

LBNFLBNF
νν Beam Beam



32                  July 19th, 2022                               Daniel Cherdack | University of Houston                       Seattle Snowmass Summer Meeting

ND-GAr Magnatized TPC
● Design

– Same Ar target at the DUNE FD (and ND-LAr)
– High-pressure (10 bar)
– TPC surrounded by EM calorimeter and superconducting magnet 
– May need to wait for Phase II; Temporary Muon Spectrometer 

(TMS) until then (magnetized planes of Fe & scintillator)
● Physics

– Spectrometer for tracks that exit ND-LAr: track sign and momentum 
(TMS can still do this)

– ν-Ar interactions with low thresholds: better understand the hadronic 
system details

– Excellent particle ID: study details of exclusive final states
– Fine tuning of cross section systematic errors
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ND-GAr Magnatized TPC
● Constrain systematic uncertainties at levels consistent with FD 

statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection
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DUNE ND Complex Summary
● Multi-detector design
● Liquid Argon TPC

– Similar technology to the FD
– Design changes to handle high rates

● Downstream Spectrometer
– Measures momentum and charge of exiting tracks
– Will eventually be a GAr TPC able to measure hadronic shower 

details
● On-axis beam monitor

– Ensure stable beam operations
– Contribute physics measurements and crosschecks

● Off-axis measurements from PRISM
– Enables statistical constraints of incoming neutrino energy
– Paradigm shifting oscillation measurement technique 
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Take Home Message
● DUNE has the ability to push neutrino oscillation 

(lepton weak mixing) physics into the precision age
● A highly capable ND complex is crucial to 

exploiting the high statistics data provided by the 
beam and FD
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Thank You
  

 Questions?
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Backup Slides
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● For most interactions the incoming and 
outgoing particles are the same flavor

– Gravitational
– Electromagnetic
– Strong

● For Weak interactions the incoming and 
outgoing particles are weak isospin pairs

● Differences between Weak Flavor and 
Mass eigenstates also allow for apparent 
mixing between isospin pair families

● This mixing is described by the:
– CKM Matrix (quarks)
– PMNS Matrix (leptons)

Mixing Between Weak Flavor and Mass Eigenstates 



39                  July 19th, 2022                               Daniel Cherdack | University of Houston                       Seattle Snowmass Summer Meeting

● For most interactions the incoming and 
outgoing particles are the same flavor

– Gravitational
– Electromagnetic
– Strong

● For Weak interactions the incoming and 
outgoing particles are weak isospin pairs

● Differences between Weak Flavor and 
Mass eigenstates also allow for apparent 
mixing between isospin pair families

● This mixing is described by the:
– CKM Matrix (quarks)
– PMNS Matrix (leptons)

The Mixing Matrices 

The PMNS Matrix
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Understanding ν Cross Sections
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Understanding ν Cross Sections
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What Do We Know So Far?
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Predicting the Neutrino Event Rate
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DUNE ND R&D
Shamelessly stolen from A. Mastbaum

https://indico.desy.de/event/28202/contributions/106009/
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DUNE ND R&D
Shamelessly stolen from A. Mastbaum

https://indico.desy.de/event/28202/contributions/106009/
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Phase I Physics Goals and ND Requirements

● Unambiguously measures the MO at greater that 5σ

● Confirm CPV at 3σ near δCP = ±π/2

● Confirm and/or constrain measurements on θ13, θ23, and Δm231

● Phase I challenges:
– Operating full detecor suire
– Reconstruction algorithms
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● Constrain systematic uncertainties at levels consistent with FD statistics
– Neutrino flux 
– Neutrino-argon cross sections
– Relationship between interaction products 

and neutrino energy
– LAr TPC detector response

● Detector design consideration
– On-axis beam monitoring
– Event containment

● Transverse size: hadronic system
● Longitudinal size: downstream spectrometer

– (Functionally) identical detector technology
● Modifications for high rate
● Same nucleus, same physical response

– Ability to sample off-axis fluxes
– Lower particle detection thresholds
– Neutron detection

Phase I Requirements for the DUNE Near Detector
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