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Weak Mixing Physics with DUNE: Structure and Precision
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Weak Mixing Physics with DUNE: Unitarity and CP-Violation
Quarks
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Predicting the Neutrino Event Rate
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Requirements for the DUNE Near Detector

« Constrain systematic uncertainties at levels consistent
with FD statistics

— Neutrino flux

. . 60 :

— Neutrino-argon cross sections MiSysemaics  mmizzo

. . . . rm —— Mominal Analysis

- Relationship between interaction products s bl SO gl e
and neutrino energy in*8,, = 0.580 unconstrained

8

- LAr TPC detector response
« Detector design consideration
— On-axis beam monitoring
- Event containment
« Transverse size: hadronic system
« Longitudinal size: downstream spectrometer 10
- (Functionally) identical detector technology

8., resolution (degrees)
8 8

. Modifications for high rate % 200 400 600 800 1000 1200 1400

. Exposure (kt-MW-years)
« Same nucleus, same physical response

— Ability to sample off-axis fluxes
- Lower particle detection thresholds
— Neutron detection
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Phase | Requirements for the DUNE Near Detector

Mass Ordering Sensitivity

* Constrain systematic uncertainties at levels consistent with FD

. . A0 DUNE Sensitivity e 7 years (staged)
statistics N —
. sin’26,, = 0.088 0.003 So: Variations of
= Neutrino flux 3004 <8 <08 i
— Neutrino-argon cross sections 25
— Relationship between interaction products 20

and neutrino energy
- LAr TPC detector response
* Detector design consideration
- On-axis beam monitoring
Event containment [ ovneso sy
* Transverse size: hadronic system f R e
* Longitudinal size: downstream spectrometer '
(Functionally) identical detector technology
* Modifications for high rate = [y .
* Same nucleus, same physical response ; :
Ability to sample off-axis fluxes
Lower particle detection thresholds iz

Neutron detection R

- Phase I: 100% of §_, values

— Start at 1.2 MW
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The DUNE ND Complex - Phase |

SAND ™S ND-LAr
System for On-Axis  Magnetized Temporary Modular Liquid
Neutrino Detection Muon Spectrometer Argon TPC
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ND-LAr Modular TPC (ArgonCube)

Design

Same liquid argon target as the DUNE FD

Modular design: 35 1x1x3 m3 modules with two TPCs per module
(50 cm drift)

Charge readout: LArPix pixel readout for direct-to-3D charge
information

Light readout: High (~40%) detector coverage with ns-scale timing
and cm-scale position

Physics

High-statistics v interactions in LAr TPC
~30M accepted v, CC events/year (FHC / v mode, 1.2 MW beam)
Constrain flux via v+e elastic scattering

Precise constraints on event rates (flux x cross sections) in LAr

Figure: argoncube.org

(active
volume
dimensions) 5

3m

TPC Module

Pixel Readout
Anodes

Central HV Cathode

Optical
Detectors

Resistive
Field Cage

Figure: argoncube.org
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ArgonCube Event Containment  Hadronic Cantainment Effciency

E DUNE Simulation
0.9 ; Acceptance (Full F.V.)
0.8f

« Constrain systematic uncertainties at levels consistent
with FD statistics

Acceptance (Central 1m3)
Fraction per 0.5 GeV

0.7F

— Neutrino flux 0.6f
- Neutrino-argon cross sections 0.5k
- Relationship between interaction products 04F
and neutrino energy 0.3F

- LAr TPC detector response &
Muon 0.1

« Detector design consideration Cortainment ) ST S SRR,
- On-axis beam monitoring Efficiency DUNE Simulation
- Event containment s

« Transverse size: hadronic system
- Longitudinal size: downstream spectrometer
- (Functionally) identical detector technology
« Modifications for high rate
« Same nucleus, same physical response
— Ability to sample off-axis fluxes
- Lower particle detection thresholds
— Neutron detection

Hadronic energy (GeV)

TMS extends
longitudinal muon
containment
beyond ND-LAr
length

Muon transverse momentum (GeV/c)

0 2 4 6 8 10
Muon longitudinal momentum (GeV/c)
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ArgonCube CC-v_Inclusive Samples

« Constrain systematic uncertainties at levels consistent
with FD statistics Slices of hadronic

— Neutrino flux / energy fraction
- Neutrino-argon cross sections Huge rate

] 00<y s 01 6 01<y e 0.2

6 0.2<ync<0.3
- Relationship between interaction products U manemonmone B aseey 1 P
and neutrino energy ; — FHC sel. . 1 4
----FHC bkgd N 7
- LAr TPC detector response o —RHCsol. I
. . , | ----RHC bkgd 4k 1 ik
« Detector design consideration 2 i 1
- On-axis beam monitoring %
. = % 5 0 9 5 0 9 5
- Event containment T g 04<y <08 g 0B<y <10
. . 3 T T r
- Transverse size: hadronic system > | o 1 4
. Longitudinal size: downstream spectrometer 2 of A J I
- (Functionally) identical detector technology : o
- Modifications for high rate i 1% 1 4]
« Same nucleus, same physical response o . J B J g
— Ability to sample off-axis fluxes Reconstructed energy (GeV)

- Lower particle detection thresholds
— Neutron detection
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ArgonCube Constraints (CC-v Inc.) . .I
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SAND: System for On-Axis Neutrino Detection

SAND Consortium

>

* Design
- Fixed on-axis position
- LAr TPC Target + STT + Ecal + solenoid magnet
- Ecal and Magnet repurposed from KLOE Experiment
* Physics
- Continuous monitoring of the on-axis flux:
* Detailed flux stability on a weekly basis
* Tune flux model as function of time
* Quick response to beamline geometry changes Supporting

- STT provides CH and C targets for comparison with world cross section data
(mostly CH) and H cross sections via subtraction
— Broad physics program beyond neutrino oscillations:
* Cross sections
*  Weak mixing angle
* BSM Searches
— Ar events provide ND-LAr cross check
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ArgonCube Constraints (CC-vu Inc.)

Constrain systematic uncertainties at levels consistent
with FD statistics

— Neutrino flux
— Neutrino-argon cross sections

- Relationship between interaction products
and neutrino energy

- LAr TPC detector response
Detector design consideration
- On-axis beam monitoring
- Event containment
« Transverse size: hadronic system
« Longitudinal size: downstream spectrometer
- (Functionally) identical detector technology
« Modifications for high rate
« Same nucleus, same physical response
- Ability to sample off-axis fluxes
- Lower particle detection thresholds
— Neutron detection

SAND Consortium

Supporting
Structure

Kloe
calorimeter
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PRISM

* Design

- System for moving the LAr TPC + tracker up to 30 m
transverse to the beam direction

— Enables scan of beam at multiple off-axis positions

* Physics
- Beam energy spectrum changes with off-axis position
- Peak energy is reduced; peak width narrows

- Use statistical subtraction to measure cross sections
in a narrow incoming neutrino energy range

— Better control of hadronic physics with constrained
incoming neutrino energy

— Direct use of ND data in oscillation analysis: shifts
cross section uncertainties to flux uncertainties

A
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PRISM

* Design

- System for moving the LAr TPC + tracker up to 30 m
transverse to the beam direction

— Enables scan of beam at multiple off-axis positions

* Physics

>

- Beam energy spectrum changes with off-axis position
- Peak energy is reduced; peak width narrows

- Use statistical subtraction to measure cross sections
in a narrow incoming neutrino energy range

— Better control of hadronic physics with constrained
incoming neutrino energy

- Direct use of ND data in oscillation analysis: shifts
cross section uncertainties to flux uncertainties

®, (cm? per POT per 1 GeV)

4
E. (GeV)
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PRISM

* Design

- System for moving the LAr TPC + tracker up to 30 m
transverse to the beam direction

— Enables scan of beam at multiple off-axis positions

* Physics
- Beam energy spectrum changes with off-axis position
- Peak energy is reduced; peak width narrows

- Use statistical subtraction to measure cross sections
in a narrow incoming neutrino energy range

— Better control of hadronic physics with constrained
incoming neutrino energy

- Direct use of ND data in oscillation analysis: shifts
cross section uncertainties to flux uncertainties
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PRISM

* Design

- System for moving the LAr TPC + tracker up to 30 m
transverse to the beam direction

— Enables scan of beam at multiple off-axis positions

* Physics
- Beam energy spectrum changes with off-axis position
- Peak energy is reduced; peak width narrows

- Use statistical subtraction to measure cross sections
in a narrow incoming neutrino energy range

— Better control of hadronic physics with constrained
incoming neutrino energy

- Direct use of ND data in oscillation analysis: shifts
cross section uncertainties to flux uncertainties
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PRISM: Express

X10

 Start with:
MC ND v, flux

prediction at
each off-axis
position: ®*’(E ,x)

Osc. Prob. as
ND Flux Weights

30}

201

Off axis position (m)

Neutrinos/cm? per GeV per POT ©

0°
0
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PRISM: Express
Osc. Prob. as
ND Flux Weights

x10”

Start with:
MC ND v, flux
prediction at

each off-axis
position: ®*’(E ,x)

Off axis position (m)
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3 AF
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¢0

PRISM : Exp reSS Lini Com:. nght

x10”

Osc. Prob. as ’
ND Flux Weights

Step 2:

Find set of position
weights C(x) such
that:

C(x) - ®*°(E ,x) = O(E)

0c-

(w) uonisod sIxy 4O
0l

54
39
Step 1: 5 ,f
Pick oscillation g
hypothesis to get & '
e 0

FD v, flux ®™(E )

E, (GeV)

Neutrinos/cm” per GeV per POT

Start with:

MC ND v, flux

prediction at
each off-axis
position: ®*’(E ,x)

23 July 19" 2022 Daniel Cherdack | University of Houston

Seattle Snowmass Summer Meeting



Lin. Comb. Weight

PRISM: Express ¢

o

x10”

Osc. Prob. as | S S Start with:
. | 2 MCND v flux
|| [
ND Flux Weights © prediction at
D 2: = e h off-axis
Ste 2. ; ‘= eac . .
Find set of position %; NS g position: ®Y°(E ,x)
weights C(x) such 2 E
that: S “
C(x) - ®Y(E ,x) = ®(E) 3 .l
=40 (Step 3:
e Repeat for each
Step 1: a7 FD v, flux ®™(E,)
otep L. g2 :
Pick oscillation & | required for osc.
hypothesis to get £ | | parameter fits
0

FD v, flux @™(E)
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PRISM: Use Lo e
Weights to T
Predict FD

Event Spectrum

( Start with:

Oscillation hypothesis,
P(E ) expressed as
position weights C(x)
such that:

C(x) - PY(E x) = D(E)

o 01X

0c-

4 Only uses MC A
flux prediction

No cross section
. model required! )

(w) uomsod sixy 4O
O
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PRISM : Use Lini Comb. Wii’ght

= g o m g ><1(Jﬁ _
Weights to - =
Predict FD i 00 &
Event Spectrum o 3
> =
Start with: G L sy
Oscillation hypothesis, %
P(E ) expressed as =
position weights C(x) ~— ° -0 > 4 5 3 10
such that: Er2eRea. [y
Cx)- (I)ND(EV,X) =®(E) (e _ N
C Only uses MC flux A Sﬁp.—l'
prediction & ND data Multiply C(x) by ND
data, D"(E_ ,x) to get
No cross section the FD event rate:
. model required! C(x)D"(E_ x) = R™(E
\( )'D™(E, X) ( )
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PRISM : Use Lini Comb. Weight

i 5 5 S x10° _
Weights to B :
Predict FD | Only uses MC flux £

3 prediction & ND data fl '’ &
Event Spectrum =
No cross section »

Start with:

Oscillation hypothesis,
P(E ) expressed as

position weights C(x)

50

0}—

model required!

W) uoNISod SIXY JO

(
0

10
such that: (GeV)
C(x) - @"(E,x) = B(E,) Step 1

Multiply C(x) by ND
data, DY’(E_ x) to get
the FD event rate:

C(x)-DN”(Erec,x) =R™(E )

rec

,Step 2:
Compare with FD data, D(E_ )

with the prediction R*(E_ ) to
determine likelihood of P(E )

Event rate 10° /GeV /Year

27 July 19", 2022 Daniel Cherdack | University of Houston Seattle Snowmass Summer Meeting



PRISM

* Constrain systematic uncertainties at levels consistent with FD
statistics

= Neutrino flux
— Neutrino-argon cross sections

— Relationship between interaction products
and neutrino energy

- LAr TPC detector response
* Detector design consideration
— On-axis beam monitoring
- Event containment
* Transverse size: hadronic system
* Longitudinal size: downstream spectrometer
(Functionally) identical detector technology
* Modifications for high rate
* Same nucleus, same physical response
- Ability to sample off-axis fluxes
- Lower particle detection thresholds
- Neutron detection

28 July 19" 2022 Daniel Cherdack | University of Houston Seattle Snowmass Summer Meeting



Improved Systematics: Phase | = Phase Il

CP Violation Sensitivity

- DUNE Sensitivity 7 yoars (staged) DUNE CPV Sensitivity [l phase il by & years
12|~ All Systematics 10 years (staged) All Systematics B Fhase:

" Mormal Ordering == -Macaxi of Throwsl

B T 6—Normal Ordering Start at 1.2 NW

L Sin’?ﬂm = 0.088 +0.003 b M 50% of &bF values ’
10—0.4l:sin29nd:0.5 statiatics, systematica, = 4 year ramp to 1.2 MW

£ and ascillation parameters.

Q1 -08-06-04-02 0 02 04 06 0.8
Sep/n
* Phase Il required to push CPV sensitivity * Upgrade required to enable high-precision
above 5o for 50% of d¢p values physics goals, especially for 6p
* Flux and FD functionally doubled increasing .

ND Upgrade: Lower thresholds, higher

FD event rate by 4 resolution, “missing energy” detection
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Improved Systematics: Phase | = Phase I

. Phase Il . Phase Il . Phase Il

Phase II: no beam upgrade C Phase II: no FD upgrade C Phase II: no ND upgrade

| s
[ . Phase |
I T
v >
] 3__ -----------------------------------
; 2
1 _ 50% of ., values 1 _ 50% of ., values 1 _ £ : 50% of 5, values
IIlIlIlIIIIIIIIiIIIIIIIII IIlIlIlIIIIIIIIiIIIIIIIII IIlIlIlIIIIIIIIiIIIIIIIII
ﬂl] 2 4 6 8 10 12 ﬂl] 2 4 6 8 10 12 ﬂl] 2 4 6 8 10 12
Years Years Years
* Phase Il requires 3 major upgrades * Upgrade required to enable high-precision
- Double beam intensity physics goals, especially for d¢p

- Double effective far detector mass
- Improve ND complex to keep pace with systematics

* ND Upgrade: Lower thresholds, higher
resolution, “missing energy” detection
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The DUNE ND Complex - Phase I

31

SAND

System for On-Axis
Neutrino Detection

July 19", 2022

MCND ND-LAr
¢ Magnetized Gaseous Modular Liquid
Argon TPC? Argon TPC

Daniel Cherdack | University of Houston

60 meters
underground

) NEUTRINO
PARTICLE PRODUCTION
DETECTOR

PRISM
30m Off-Axis Mobility for
LAr + Spectrometer
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ND-GAr Magnatized TPC

Design

Same Ar target at the DUNE FD (and ND-LAr)
High-pressure (10 bar)
TPC surrounded by EM calorimeter and superconducting magnet

May need to wait for Phase Il; Temporary Muon Spectrometer
(TMS) until then (magnetized planes of Fe & scintillator)

Physics

Spectrometer for tracks that exit ND-LAr: track sign and momentum
(TMS can still do this)

v-Ar interactions with low thresholds: better understand the hadronic
system details

Excellent particle ID: study details of exclusive final states

Fine tuning of cross section systematic errors

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Acceptance

DUME ND CDR

6, <20 degrees

— Total

— LAr contained
— HPgTPC track
—— ECAL stopper

L 1 L
1 2 3 4 5 6
Muon kinetic energy (GeV)
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ND-GAr Magnatized TPC

* Constrain systematic uncertainties at levels consistent with FD
statistics

= Neutrino flux
- Neutrino-argon cross sections

— Relationship between interaction products
and neutrino energy

- LAr TPC detector response
* Detector design consideration
— On-axis beam monitoring
Event containment
* Transverse size: hadronic system
* Longitudinal size: downstream spectrometer

DUME ND CDR

0.9f
0.8}

(Functionally) identical detector technology
* Modifications for high rate

* Same nucleus, same physical response

Ability to sample off-axis fluxes
Lower particle detection thresholds
Neutron detection

8
=
2
@
8
<

0.7f
0.6
0.5f
0.4f
0.3f
0.2f
0.

6, <20 degrees

— Total

— LAr contained
— HPgTPC track
—— ECAL stopper

3 4 5 6
Muon kinetic energy (GeV)
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DUNE ND Complex Summary

Multi-detector design
Liquid Argon TPC

Similar technology to the FD

Design changes to handle high rates

Downstream Spectrometer

Measures momentum and charge of exiting tracks

Will eventually be a GAr TPC able to measure hadronic shower

details

On-axis beam monitor

Off-axis measurements from PRISM

Ensure stable beam operations

Contribute physics measurements and crosschecks

Enables statistical constraints of incoming neutrino energy

Paradigm shifting oscillation measurement technique

July 19" 2022

Daniel Cherdack | University of Houston
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Take Home Message

* DUNE has the ability to push neutrino oscillation 7
(lepton weak mixing) physics into the precision age

6
* A highly capable ND complex is crucial to
exploiting the high statistics data provided by the 5
beam and FD
I ¢
: s
2

. Phase Il

Phase ll: no ND upgrade

.......................

IIIIIIII-II-II|IIII|IIFIIIIIIIIIII

IIIIIIIIIIIIIII[IIIIIlIII

50% of 5, values

ul] 2 4 6 8 10

12
Years
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Thank You

Questions?
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Mixing Between Weak Flavor and Mass Eigenstates

181 ZIIII

electron

Leptons

Ve

neutrino neutrino
electron muon
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For most interactions the incoming and
outgoing particles are the same flavor

- Gravitational
— Electromagnetic
- Strong

For Weak interactions the incoming and
outgoing particles are weak isospin pairs

Differences between Weak Flavor and
Mass eigenstates also allow for apparent
mixing between isospin pair families

This mixing is described by the:

—  CKM Matrix (quarks)
-  PMNS Matrix (leptons)

Seattle Snowmass Summer Meeting



The Mixing Matrices

The CKM Matrix:
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For most interactions the incoming and
outgoing particles are the same flavor

- Gravitational
— Electromagnetic
- Strong

For Weak interactions the incoming and
outgoing particles are weak isospin pairs

Differences between Weak Flavor and
Mass eigenstates also allow for apparent
mixing between isospin pair families

This mixing is described by the:

—  CKM Matrix (quarks)
-  PMNS Matrix (leptons)
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Understanding v Cross Sections

Quasi-elastic
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Understanding v Cross Sections
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What Do We Know So Far? T: Ve P

normal hierarchy (NH) inverted hierarchy (IH)
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Predicting the Neutrino Event Rate

N B = [0(ET) o () P>, BT e EE) S(Ev B
N (Fr)
Measure 0 ( Etvr“e)
with a near e
detector o(E)")
P(o~>p,E."
Highly Dependent { c Evrue N hadronic
i ) ascade T ;
on Hadronic System S ( Etvme , ErVeCO) cascac TEL G L L Rl e
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Shamelessly stolen from A. Mastbaum

DUNE ND R&D

ND-LAr ND-GAr SAND
e Tested ~70% scale module o R&D gas TPCs @ FNAL e 3DST beam tests @ CERN
® 2x2 v beam test @ FNAL (IROC) and RHUL (OROC) e US-Japan joint prototyping
e Full-scale tests to follow e Gas, HV tests underway in efforts underway

dedicated HPgTPCs

US-Japan
prototypes

p— ALICE IROC " CERN tests
Module-0 @ Bern

-
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https://indico.desy.de/event/28202/contributions/106009/

Shamelessly stolen from A. Mastbaum

DUNE ND R&D

ND-LAr ND-GAr SAND
e Tested ~70% scale module e R&D gas TPCs @ FNAL e 3DST beam tests @ CERN
® 2x2 v beam test @ FNAL (IROC) and RHUL (OROC) e US-Japan joint prototyping
e Full-scale tests to follow e Gas, HV tests underway in efforts underway

dedicated HPgTPCs

US-Japan
prototypes

] &

ALICE IROC CERN tests

45 July 19" 2022 Daniel Cherdack | University of Houston Seattle Snowmass Summer Meeting


https://indico.desy.de/event/28202/contributions/106009/

Phase | Physics Goals and ND Requirements

Mass Ordering Sensitivity
40 DUNE Sensitivity = 7 years (staged)
' atioonge i
* Unambiguously measures the MO at greater that 5¢ s, -ooetoms L
30 < si <06 mmm
« Confirm CPV at 3c near 6 = £m/2 2

* Confirm and/or constrain measurements on 0,5, 0,5, and Amz2,,

* Phase | challenges: 10
. . 5
— Operating full detecor suire A
— Reconstruction algorithms oo somay

[Normal Ordering

7
Years
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Phase | Requirements for the DUNE Near Detector

Mass Ordering Sensitivity

* Constrain systematic uncertainties at levels consistent with FD statistics  sruamm——mas
. All Systematics 10 years (staged)
- Neutrlno ﬂUX 35 :::;B:Sr:;:;:a_ma —r::;::?
. . 0.4 <sin®8, <0.6 T AT
- Neutrino-argon cross sections # TR
-~ Relationship between interaction products =
20

and neutrino energy
- LAr TPC detector response
* Detector design consideration
— On-axis beam monitoring
- Event containment oone w0ty
* Transverse size: hadronic system 1O ot orderns 8
* Longitudinal size: downstream spectrometer - :
(Functionally) identical detector technology
* Modifications for high rate Ik;
* Same nucleus, same physical response
Ability to sample off-axis fluxes
— Lower particle detection thresholds = e
— Neutron detection EEEREEE™

I Phese s 100% of 5, values

— Start at 1.2 MW
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