

The DUNE Near Detector

Daniel Cherdack, University of Houston on behalf of the DUNE Collaboration Seattle Snowmass Summer Meeting Tuesday July 19th, 2022

UNIVERSITY of HOUSTON

Daniel Cherdack | University of Houston

Weak Mixing Physics with DUNE: Structure and Precision

Precision: Few-percent CPV: unconfirmed

2

Daniel Cherdack | University of Houston

Weak Mixing Physics with DUNE: Unitarity and CP-Violation

Quarks

Leptons

July 19th, 2022

3

Daniel Cherdack | University of Houston

Daniel Cherdack | University of Houston

$$N_{\textit{pred}}(E_{\nu}^{\textit{reco}}) = \Phi(E_{\nu}^{\textit{true}}) \sigma(E_{\nu}^{\textit{true}}) P(\alpha \rightarrow \beta, E_{\nu}^{\textit{true}}) \epsilon(E_{\nu}^{\textit{reco}}) S(E_{\nu}^{\textit{true}}, E_{\nu}^{\textit{reco}})$$

5

Daniel Cherdack | University of Houston

Daniel Cherdack | University of Houston

Requirements for the DUNE Near Detector

- Neutrino flux
- Neutrino-argon cross sections
- Relationship between interaction products and neutrino energy
- LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

8

Phase I Requirements for the DUNE Near Detector

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

July 19th, 2022 D

Daniel Cherdack | University of Houston

The DUNE ND Complex - Phase I

ND-LAr Modular TPC (ArgonCube)

- Design
 - Same liquid argon target as the DUNE FD
 - Modular design: 35 1×1×3 m³ modules with two TPCs per module (50 cm drift)
 - Charge readout: LArPix pixel readout for direct-to-3D charge information
 - Light readout: High (~40%) detector coverage with ns-scale timing and cm-scale position
- Physics
 - High-statistics v interactions in LAr TPC
 - \sim ~30M accepted v_µ CC events/year (FHC / v mode, 1.2 MW beam)
 - Constrain flux via v+e elastic scattering
 - Precise constraints on event rates (flux × cross sections) in LAr

ArgonCube Event Containment

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

Muon longitudinal momentum (GeV/c)

Daniel Cherdack | University of Houston

Muon transverse momentum (GeV/c)

ArgonCube CC- ν_{μ} Inclusive Samples

- Constrain systematic uncertainties at levels consistent
 with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

ArgonCube Constraints (CC- ν_{u} Inc.)

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

14 July 19th, 2022

Daniel Cherdack | University of Houston

SAND: System for On-Axis Neutrino Detection

SAND Consortium

- Design
 - Fixed on-axis position
 - LAr TPC Target + STT + Ecal + solenoid magnet
 - Ecal and Magnet repurposed from KLOE Experiment
- Physics
 - Continuous monitoring of the on-axis flux:
 - Detailed flux stability on a weekly basis
 - Tune flux model as function of time
 - Quick response to beamline geometry changes
 - STT provides CH and C targets for comparison with world cross section data (mostly CH) and H cross sections via subtraction
 - Broad physics program beyond neutrino oscillations:
 - Cross sections
 - Weak mixing angle
 - BSM Searches
 - Ar events provide ND-LAr cross check

ArgonCube Constraints (CC- ν_{μ} Inc.)

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

SAND Consortium

Daniel Cherdack | University of Houston

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

- Design
 - System for moving the LAr TPC + tracker up to 30 m transverse to the beam direction
 - Enables scan of beam at multiple off-axis positions
- Physics
 - Beam energy spectrum changes with off-axis position
 - Peak energy is reduced; peak width narrows
 - Use statistical subtraction to measure cross sections in a narrow incoming neutrino energy range
 - Better control of hadronic physics with constrained incoming neutrino energy
 - Direct use of ND data in oscillation analysis: shifts cross section uncertainties to flux uncertainties

20

PRISM: Express Osc. Prob. as ND Flux Weights

21

PRISM: Express Osc. Prob. as ND Flux Weights

July 19th, 2022

Daniel Cherdack | University of Houston

PRISM: Use Weights to Predict FD Event Spectrum

PRISM: Use Weights to Predict FD Event Spectrum ♀

Start with: Oscillation hypothesis, $P(E_v)$ expressed as position weights C(x)such that: $C(x) \cdot \Phi^{ND}(E_v, x) = \Phi(E_v)$

PRISM: Use Weights to Predict FD Event Spectrum g

Start with: Oscillation hypothesis, $P(E_v)$ expressed as position weights C(x)such that: $C(x) \cdot \Phi^{ND}(E_v, x) = \Phi(E_v)$

<u>Step 2</u>:

Compare with FD data, $D^{FD}(E_{rec})$ with the prediction $R^{FD}(E_{rec})$ to determine likelihood of $P(E_v)$

Axis Position (m

27

Daniel Cherdack | University of Houston

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

28

Daniel Cherdack | University of Houston

Improved Systematics: Phase I → Phase II

CP Violation Sensitivity

- Phase II required to push CPV sensitivity above 5σ for 50% of δ_{CP} values
- Flux and FD functionally doubled increasing FD event rate by 4

- Upgrade required to enable high-precision physics goals, especially for δ_{CP}
- ND Upgrade: Lower thresholds, higher resolution, "missing energy" detection

29

Improved Systematics: Phase I → Phase II

- Phase II requires 3 major upgrades
 - Double beam intensity
 - Double effective far detector mass
 - Improve ND complex to keep pace with systematics

- Upgrade required to enable high-precision physics goals, especially for δ_{CP}
- ND Upgrade: Lower thresholds, higher resolution, "missing energy" detection

The DUNE ND Complex - Phase II

Daniel Cherdack | University of Houston

ND-GAr Magnatized TPC

- Design
 - Same Ar target at the DUNE FD (and ND-LAr)
 - High-pressure (10 bar)
 - TPC surrounded by EM calorimeter and superconducting magnet
 - May need to wait for Phase II; Temporary Muon Spectrometer (TMS) until then (magnetized planes of Fe & scintillator)
- Physics
 - Spectrometer for tracks that exit ND-LAr: track sign and momentum (TMS can still do this)
 - v-Ar interactions with low thresholds: better understand the hadronic system details
 - Excellent particle ID: study details of exclusive final states
 - Fine tuning of cross section systematic errors

ND-GAr Magnatized TPC

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

33

Daniel Cherdack | University of Houston

DUNE ND Complex Summary

- Multi-detector design
- Liquid Argon TPC
 - Similar technology to the FD
 - Design changes to handle high rates
- Downstream Spectrometer
 - Measures momentum and charge of exiting tracks
 - Will eventually be a GAr TPC able to measure hadronic shower details
- On-axis beam monitor
 - Ensure stable beam operations
 - Contribute physics measurements and crosschecks
- Off-axis measurements from PRISM
 - Enables statistical constraints of incoming neutrino energy
 - Paradigm shifting oscillation measurement technique

Take Home Message

- DUNE has the ability to push neutrino oscillation (lepton weak mixing) physics into the precision age
- A highly capable ND complex is crucial to exploiting the high statistics data provided by the beam and FD

35

Daniel Cherdack | University of Houston

Thank You

Questions?

Daniel Cherdack | University of Houston

Backup Slides

Daniel Cherdack | University of Houston

Mixing Between Weak Flavor and Mass Eigenstates

- For most interactions the incoming and outgoing particles are the same flavor
 - Gravitational
 - Electromagnetic
 - Strong
- For Weak interactions the incoming and outgoing particles are weak isospin pairs
- Differences between Weak Flavor and Mass eigenstates also allow for apparent mixing between isospin pair families
- This mixing is described by the:
 - CKM Matrix (quarks)
 - PMNS Matrix (leptons)

38

The Mixing Matrices

The CKM Matrix: $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{M}$

The PMNS Matrix

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

- For most interactions the incoming and outgoing particles are the same flavor
 - Gravitational
 - Electromagnetic
 - Strong
- For Weak interactions the incoming and outgoing particles are weak isospin pairs
- Differences between Weak Flavor and Mass eigenstates also allow for apparent mixing between isospin pair families
- This mixing is described by the:
 - CKM Matrix (quarks)
 - PMNS Matrix (leptons)

39

Understanding v Cross Sections

July 19th, 2022

Daniel Cherdack | University of Houston

40

Understanding v Cross Sections

Daniel Cherdack | University of Houston

Daniel Cherdack | University of Houston

$$N_{pred}(E_{v}^{reco}) = \Phi(E_{v}^{true}) \sigma(E_{v}^{true}) P(\alpha \rightarrow \beta, E_{v}^{true}) \varepsilon(E_{v}^{reco}) S(E_{v}^{true}, E_{v}^{reco})$$

$$Measure with a near detector \left\{ \begin{array}{c} N_{pred}(E_{v}^{reco}) \\ \Phi(E_{v}^{true}) \\ \sigma(E_{v}^{true}) \\ P(\alpha \rightarrow \beta, E_{v}^{true}) \\ \varepsilon(E_{v}^{true}) \\ S(E_{v}^{true}, E_{v}^{reco}) \end{array} \right\} \gamma_{\mu} \gamma_{\mu}$$

Daniel Cherdack | University of Houston

DUNE ND R&D

ND-LAr

- Tested ~70% scale module
- \bullet 2×2 ν beam test @ FNAL
- Full-scale tests to follow

ND-GAr

- R&D gas TPCs @ FNAL (IROC) and RHUL (OROC)
- Gas, HV tests underway in dedicated HPgTPCs

ALICE IROC

SAND

- 3DST beam tests @ CERN
- US-Japan joint prototyping efforts underway

CERN tests

44

Daniel Cherdack | University of Houston

DUNE ND R&D

- ND-LAr
- Tested ~70% scale module
- \bullet 2×2 v beam test @ FNAL
- Full-scale tests to follow

ND-GAr

- R&D gas TPCs @ FNAL (IROC) and RHUL (OROC)
- Gas, HV tests underway in dedicated HPgTPCs

ALICE IROC

SAND

- 3DST beam tests @ CERN
- US-Japan joint prototyping efforts underway

CERN tests

July 19th, 2022

45

Daniel Cherdack | University of Houston

Phase I Physics Goals and ND Requirements

- Unambiguously measures the MO at greater that 5σ
- Confirm CPV at 3σ near $\delta_{CP} = \pm \pi/2$
- Confirm and/or constrain measurements on θ_{13} , θ_{23} , and Δm_{31}^2
- Phase I challenges:
 - Operating full detecor suire
 - Reconstruction algorithms

Mass Ordering Sensitivity

Daniel Cherdack | University of Houston

Phase I Requirements for the DUNE Near Detector

- Constrain systematic uncertainties at levels consistent with FD statistics
 - Neutrino flux
 - Neutrino-argon cross sections
 - Relationship between interaction products and neutrino energy
 - LAr TPC detector response
- Detector design consideration
 - On-axis beam monitoring
 - Event containment
 - Transverse size: hadronic system
 - Longitudinal size: downstream spectrometer
 - (Functionally) identical detector technology
 - Modifications for high rate
 - Same nucleus, same physical response
 - Ability to sample off-axis fluxes
 - Lower particle detection thresholds
 - Neutron detection

Daniel Cherdack | University of Houston

Seattle Snowmass Summer Meeting

6

Years

2