BGO and PWO crystals

BGO 1		PW0 1		
BGO 2			PW	0 2
BGO 3		PWO 3		
ID	Dimensio	on (mm³)	#	Polishing
BGO-1,2,3	25×25	i×180	3	All faces
PWO-1,2,3	20×20	×200	3	All faces

Plus another BGO crystal with a dimension of 25×25×60 mm³

Crystal test results (done by R.Y. Zhu and C. Hu)

BGO	EWLT (%)	Light Output (p.e./MeV)	Energy Resolution (%)	Light Response Uniformity (%)
BGO-1	72.2	733	17.0	2.2
BGO-2	73.8	739	16.9	2.4
BGO-3	74.6	722	17.0	2.9
Ave	73.5	731	17.0	2.5
rms/Ave (%)	1.4	1.0	0.2	12
PWO	EWLT (%)	Light Output (p.e./MeV)	Energy Resolution (%)	Light Response Uniformity (%)
PWO PWO-1	EWLT (%) 59.9	Light Output (p.e./MeV) 31	Energy Resolution (%) 101.4	Light Response Uniformity (%) 5.1
PWO-1 PWO-2	EWLT (%) 59.9 63.0	Light Output (p.e./MeV) 31 28	Energy Resolution (%) 101.4 107.2	Light Response Uniformity (%) 5.1 4.5
PWO-1 PWO-2 PWO-3	EWLT (%) 59.9 63.0 61.7	Light Output (p.e./MeV) 31 28 29	Energy Resolution (%) 101.4 107.2 103.2	Light Response Uniformity (%) 5.1 4.5 2.6
PWO-1 PWO-2 PWO-3 Ave	EWLT (%) 59.9 63.0 61.7 61.5	Light Output (p.e./MeV) 31 28 29 29	Energy Resolution (%) 101.4 107.2 103.2 103.9	Light Response Uniformity (%) 5.1 4.5 2.6 4.1

Plus other measurements: X-ray excited luminescence, Longitudinal/Transverse transmittance, Pulse Height Spectra, Light Output, Decay time

Readout setup

Oscilloscope: Lecroy waverunner 8404m

- <u>Python script</u> readout from Ethernet port (modified from https://www.tlatorre.com/cgit/lecrunch/)
- 4 channel sampling, with an extra external trigger channel
- 4 GHz, up to 40 Gbps
- Code developed to analyze the output data

DRS4 evaluation board

- 4 channel sampling, with an extra external trigger channel
- 1V peak-to-peak input. 1024 points per sampling. Up to 5 Gbps.
- Readout GUI available (similar to an oscilloscope), readout via USB2.0
- Code developed to analyze the output data

Cosmic ray test setup

- SiPM S14160-3015PS, 3x3 mm², pixel pitch: 15 um
- Vbr=38 V, Vop=42 V
- Scintillator overlapping area = 14×15 cm²
- Direct trigger with the SiPM timing signal
- Scintillator coincident signal recorded to confirm cosmic muons
- Read out scintillation light (no SiPM output observed if not attached to the crystal)

Cosmic ray result

- 6110 SiPM direct triggers in 12.5 h, average rate = 0.14 Hz
- Among all SiPM triggers, 3500 events have scintillator coincidence.

SiPM energy waveform 50 samples with scintillator coincidence. A 200 MHz 10 mV peak-to-peak sine-wave noise is found for this output (mainly due to the HV power supply we used) SiPM energy amplitude histogram with scintillator coincidence (rare large signals excluded).

²²Na test setup

- SiPM Vbr=38 V, Vop=43 V (at the time we did not realize the HV supply shows a wrong voltage reading so it is different from the cosmic ray setup)
- ²²Na source (e⁺ source → γγ, 1 uCi, purchased two years ago) placed in between BGO and scintillator1 (horizontal back-to-back setup)
- Direct trigger with the SiPM timing signal
- Scintillator coincident signal recorded to confirm cosmic muons

²²Na test setup

- 9668 SiPM direct triggers in 11.5 h, average rate = 0.22 Hz (small acceptance for the SiPM, and no scintillation photons detected due to the incident of 511 keV photons)
- Among all SiPM triggers, only 238 events have scintillator signals (scintillator positioned differently this time and less cosmic muons expected)⁵⁵

SiPM energy waveforms with scintillator signals (238 events).

SiPM energy amplitude histogram with scintillator signals (rare large signals excluded)

Larger-area SiPMs

S14160-6050HS 6x6 mm² Pixel pitch: 50 um

Checked with Hamamatsu and was told that they can ship 8 units to me in one week (\$90 per unit) \rightarrow \$67 per unit if we purchase 50 units

The one we have now: S14160-3015PS 3x3 mm² Pixel pitch: 15 um

4-channel SiPM readout board (From B. Hirosky and T. Anderson)

- 4-channel readout board is pretty small (footprint 3.85*4.35mm for 3*3mm SiPM)
- 1 timing readout, 4 energy readout

4-channel SiPM readout board (From B. Hirosky and T. Anderson)

Modification thoughts:

- Bigger foot print for 6*6mm SiPM (6.4*6.4mm for S14160-6050HS, or 6.85*7.35mm for S13360-6050PE)
- Daughterboard holding 4 SiPMs, with connector at one edge and standoffs at four corners

Planned supporting platform in the dark box

- Optical cage system from ThorLabs
- Horizontal rods: 6mm diameter and 60 mm spacing
- Crystal in the center, filter lens and PCBs attached to the 2 sides
- Can replace the two cage ends with two plastic boards to hold up rods
- The readout board can then be attached to the plastic boards
- The whole supporting platform may be placed vertically.

Blackbox

Small-diameter Monitored Drift Tube

- Built 6 sMDT chambers (4 shown here), to be used to determine the muon position and direction
- Collecting frontend mezzanine cards (chips designed at Michigan and MPI, boards produced by MPI) and producing more miniDAQ boards

Next plan

Important to have large-area SiPMs

- For the first step, will not use the sMDT detector and will put the crystal vertically
- Use the SiPM timing signal as the trigger and use the scintillator signals for validation