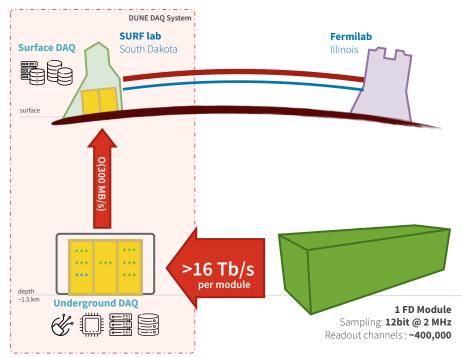


Data-Acquisition Overview

A. Thea, J. Brooke

Science and Technology Facilities Council

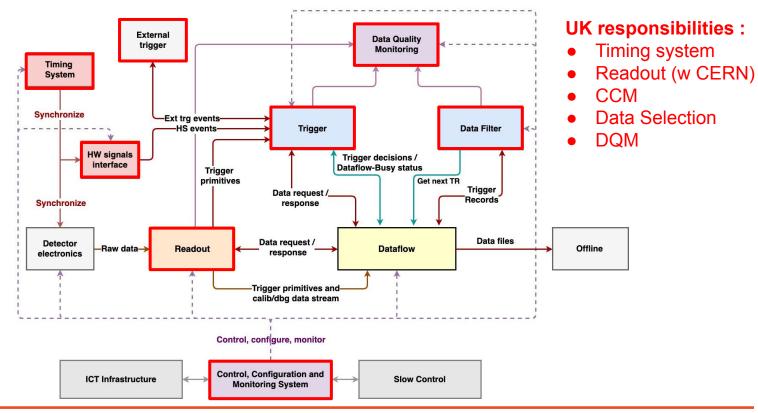
Many thanks to Simon Peeters and Giles Barr for leading the UK DAQ project over the last 4 years

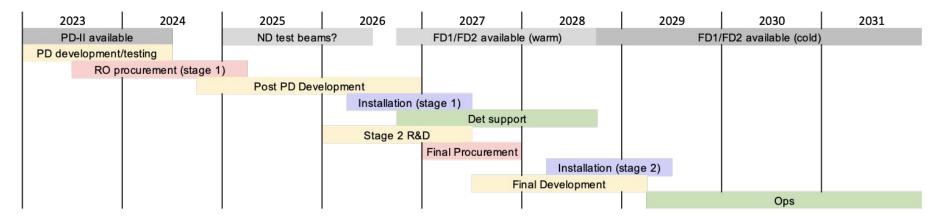

The DUNE Trigger and DAQ system

DUNE DAQ System Goals

- Distribute clock and unique timestamping to all detector components
- Collect large amount of data from detector
 - Receiving and buffering of detector data with custom high-performance firmware and software
- Selects only interesting interactions
 - Extraction of trigger primitives
 - Triggering on interesting detector activity using software algorithms
- Buffers the full data stream for ~100s for supernova physics
- Deliver selected interactions to permanent storage
- Serve both Far and Near detector

Unique key challenges


- High, data rate, high uptime
 - Use of commodity networking, computers, and storage
 - High-performance and resilient custom and off-the-shelf software for the remaining DAQ functions
- Remote experimental site
- Deep underground in an active mine


DUNE FD DAQ

DUNE FD DAQ

So where are we?

High level schedule (draft)

Outline of DAQ activities from now until physics

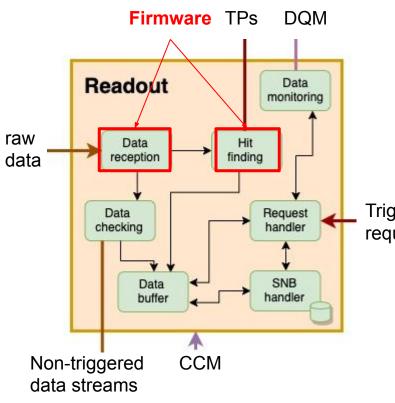
Overall DAQ Status

- PDR passed in January 2022
- 2022 DAQ development plan geared to reach a feature full system to operate PD-II HD and, shortly after, PD-II VD
- Several new key features implemented
- Supported APA installation and electronics installation for HD coldboxes and VD coldbox operations
- Started recovery from COVID years, stronger presence of UK staff and students at CERN
- Preparation for the FDR in the endgame

Issues and challenges in 2022

- Loss of key figures to the private sector, P. Rodrigues among others
- Uncertainties keep affecting our capability of planning
 - From global events PD-II HD delayed due to lack of liquid argon
 - From DUNE installation schedule in continuous evolution
- Only subset of development goals achieved
 - Important changes in timing, readout and DQM
 - Operations and support load expected, but underestimated (as usual)
 - Implementation time estimates still poor, especially when large codebase chances are required

What to look for in 2023


- Integration with detectors
 - VD Top detector electronics
 - PDS electronics
 - Transition to ethernet readout for WIBs
- Commissioning and operations
 - PD-II HD finally?
 - VD coldbox looking into using CRP1b to further integration with top/bottom electronics ahead of PD-II (HD and VD)
- Production of the timing system
- Further development/design of CCM/DQM/Data Selection/Readout system
- Presence of UK DAQ personnel at EHN1 will be crucial

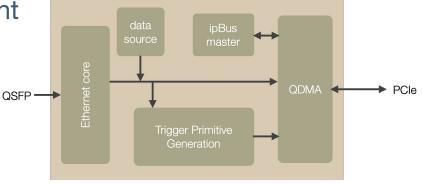
UK DAQ Status

- Readout: focus of many discussions in the past months
 - More in the next slides
- Progress in all areas of UK responsibility but with some struggles
- Mid-term review
 - Offered opportunity to look at sub-WP needs and resources
 - Need to strengthen expertise in several areas and clarify responsibilities
 - Conservative resource estimate prepared for the review
- Towards the PPRP proposal
 - Add details to planning in some areas : CCM, Trigger, DQM
 - Work with institutes to finalise responsibilities and resource requirements

Readout

- The plan has evolved substantially over the past 12 months
- Original plan for FD1 :
 - Data reception + hit-finding in custom card
 - ATLAS FELIX firmware (+protocol)
- Vertical Drift introduced data source (Top Drift Electronics) which transmits data via Ethernet (UDP)
 - Which requires a new firmware stack
- Decided to adopt Ethernet as a common protocol across HD and VD
 - Move to an off-the-shelf FPGA card
 - Reducing risks associated with custom production

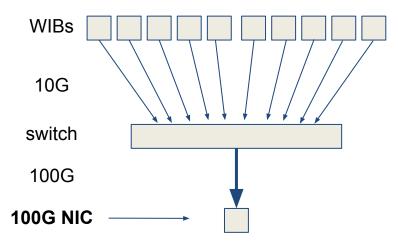
Ethernet Readout

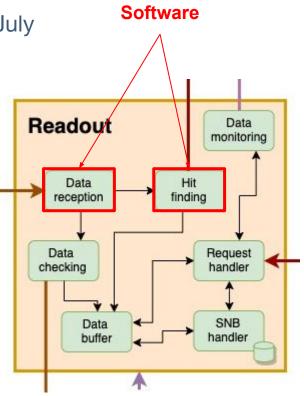

FW : UDP TX WIBs 10G switch 100G RO card FW : UDP Rx, DMA, TPG

SW:DMA

- Readout networks for both TPC and PDS look as shown
 - Non-blocking L2 network
 - 48x10G/8x100G switches
 - 42 switches required for FD1 (38 TPC + 4 PDS)
- VD differs only in topology
 - Bottom drift : $12x10G \rightarrow 100G$
 - Top drift : $4x40G \rightarrow 100G$
 - 45 switches in total

Data Reception & Hit-Finding


- Firmware
 - Format, transmit, receive data as UDP packets
 - Resilient DMA to host memory
 - Data routing for processing
 - Trigger primitive algorithms
- Software
 - DMA drivers & buffer management
 - Card/firmware control



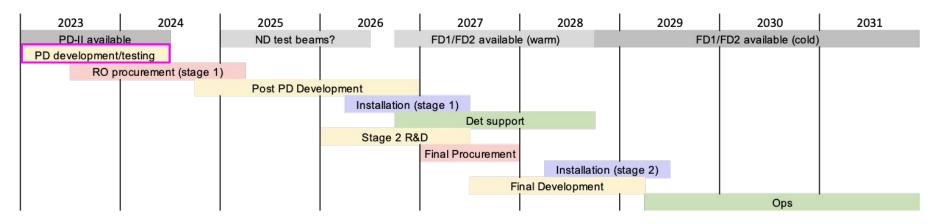
NIC based solution

- Stopgap to support early detector integration (July (22)
- Data reception via 100G network card (NIC) Software TP prototype available since 2019
- (Firmware still required for Ethernet Tx component)

Schedule Issues

- By mid 2022, FW development was behind schedule on all fronts : Ethernet Tx+Rx, data reception, TPG
 - Loss of key staff member working on Ethernet
 - Technical challenges in Ethernet data reception
 - TPG FW slippage built up over since 2021
- Schedule problems :
 - FDR (Jan '23) working demonstrator will not be available
 - Procurement (Apr '23) demonstrator required to specify components
 - **PD-II (mid 2023)** no platform available to support integration and commissioning with detectors (due to start mid 2022).
- Fundamental issue shortfall in firmware expertise

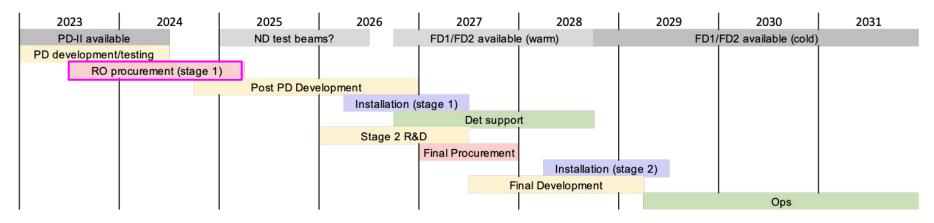
New Readout Baseline


- Detailed plans prepared to estimate effort required to deliver readout for both FPGA and stopgap NIC approaches
 - Firmware effort associated with FPGA readout could not be surmounted
 - Equipment cost of two solutions comparable
- NIC adopted as new baseline

- Next steps for readout :
 - Integration & commissioning activities using existing prototypes
 - Develop next iteration of TP generation code

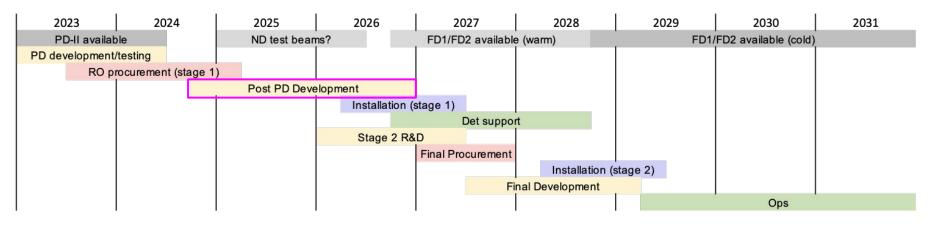
Staging DAQ Installation

- New readout scheme decouples data reception and TP generation
 - This allows us to adopt a staged approach to DAQ installation
- Current plan has DAQ procured by end '25, for installation by end '26
 - Needed for detector readout during installation to monitor noise
 - Full DAQ capability not required until detector is cold (end '28 ?)
 - DAQ computers will be out of warranty by 2030
- Makes sense to explore the minimal DAQ required for detector installation
 - Purchase and install the full DAQ on timescale it is required
 - Equivalent machines will be cheaper, can explore new architectures etc.


Future Planning : 2023

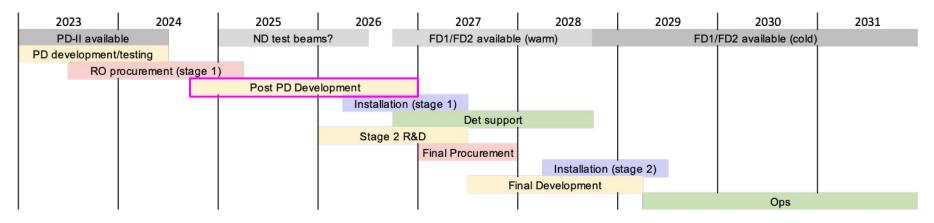
• Preparation for PD-II

- Integration/commissioning activities
- Development of features in response to experience
- Timing, Readout, CCM, Data Selection, DQM


Future Planning : 2023

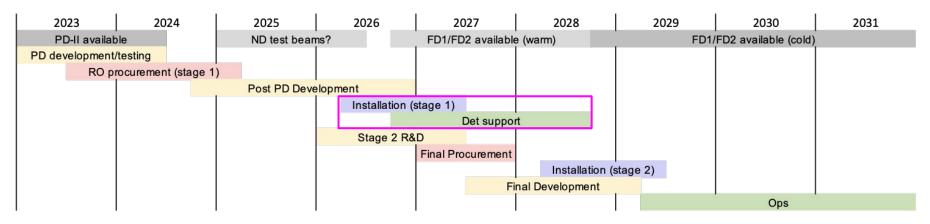
Procurement & production

- Evaluation & specification of components
 - SSDs (SNB buffer), NICs, servers
- Production of Timing system hardware


Future Planning : 2024-26

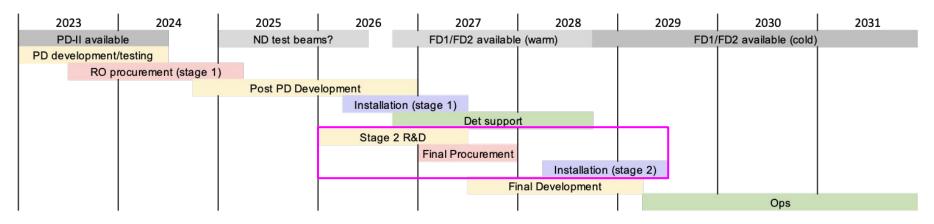
Post PDII development phase

- Final designs & software development
- Focus on infrastructure, and baseline (trigger, monitoring) algorithms
- Refinement of trigger algorithms etc. will continue up until operations


Future Planning : 2024-26

Near detector

- Use the same architecture and components as FD + ND-specific interfaces etc.
- Additional posts included in the phase 2 proposal to work on ND DAQ
- UK will focus on same key areas as FD


Future Planning : 2026-27

• FD DAQ installation and operations

- Install stage 1 DAQ
- Support detector installation

Future Planning : 2026-27

Stage 2 DAQ

- Study some (modest) technology updates for the final DAQ
- Eg. ARM servers, GPUs for hit-finding

Summary

- Many technical developments made in 2022
 - More details in the following talks
 - Against a backdrop of uncertainties from global events & evolving international plan
- New readout baseline
 - NIC data reception & trigger primitive generation in software
- Plan for staging FD DAQ installation
 - Install only what is needed for detector installation
 - Full capability in time for cold detector
- UK WP2 planning update underway
 - Focus so far mainly Readout, but detailed plans for other areas will follow
- Plenty to look forward to in 2023
 - Production of timing system
 - Integration/commissioning