

ITA Facility Infrastructure Upgrades

Evan Niner 10 August 2022

Overview

- There are many areas in which ITA facility infrastructure can be updated.
- This talk covers some of the possibilities that are in various stages of reality.
- Looking for input to prioritize work. Some projects would require new equipment and/or FTEs to support.

Data Management

- We have an increasing amount of data associated with ITA experiments.
 Management is cumbersome and through several different systems and groups
 - Significant manual interfacing between users/ITA/RSO/RAF/shipping
- As we look to increase the number of experiments and samples passing through ITA, we need an efficient central data management tool
 - Register each sample coming to ITA with ID, catalogue sample composition
 - Perform radiation length and materials calculations on sample
 - Track dose received
 - Track sample location
 - Associate dosimetry and RAF reports with each sample
 - manage shipping
- CERN has spent years developing the IRRAD Data Manager (IDM) to cover all these features in a web portal as has been highlighted in Federico's talk.

Data Management

http://icalepcs2019.vrws.de/papers/mopha048.pdf

Data Management

- In 2020 CERN provided us with the IDM repository. Summer intern spent time making some adaptations, we have a database setup and web hosting machine.
- IDM is a Django-based website which Core Computing does not (at least at the time) support.
 - Cyber security hurdles tying site into SSO, keeping compliant, etc to difficult for myself to maintain
- There is significant advantage to using the IDM tool
 - Years of development time and debugging based on the expertise of a long running facility
 - Easy interface for ITA facility to make small changes, database differences
 - Assistance from CERN IDM team
 - Common tool for users of both facilities
- We probably need 3-6 months of some computing support or ITA needs to hire a web expert to push this over the finish line (more depending on what we want this to be)
- This is high on my personal list of upgrades. A proper tool would save considerable ITA and RPO staff time and improve the safety and operations of the facility. Current methods cannot scale.

Be7 contamination

- In 2021 we installed an air blower unit with HEPA filter (100 cfm) to pull air through sample box.
- Initial unit discovered to have improper HEPA filter seal leading to leaks.
- Got through beam year using Rad vacuums which are not designed for continuous operations (used three of them).
 - Vary grateful to HCT/RPO for the loans and MSD for quick adapter fabrication
- We have now purchased a proper HEPA filter to use with original blower
 - Need to fabricate hose adapters.
 - Working with FESS engineering (Lee Hammond) to test new system before use.

Be7 contamination

- HEPA filter has improved Be7 contamination seen on samples but NOT eliminated it, particularly in very high fluence runs.
- Some strategies going forward
 - Work with RP/RPO to better understand how much Be7 we think is being produced in the beam
 - Modeling of air flow with FESS, how efficiently are we removing it.
 - Should we make optional ports in sample box to change hose location depending on sample geometry (Corrinne's sub-frame has walls on the sides maybe trapping air)?
 - Do we need additional units and/or increased air capacity.
 - Would situation improve if we ran a purge gas through box, or would we just make something else?

Beam Alignment/monitoring

- We have an identical spare VME crate at FTBF (need to add backstop to spare)
- Alignment fiducialize sample box (after decon) with PWC
- Motion table controls are accurate and reliable, need to understand stability/ jitter in box mount, screw samples in place
- We need a profile monitor in the sample box to compliment PWC
- Paul R has been working on a diode option
 - Can we improve rad hardness of diodes
 - Optimum diode pattern, improve DAQ
 - online monitoring system
 - collaborate with SMU

 We need to understand relationship between dosimetry readings and the toroids and and improve our realtime prediction of the delivered dose.

Active cooling of samples

- Many experiments would benefit from active sample cooling during irradiation
 - additional benefit reducing pressure to remove samples after irradiation for cold storage to stop annealing
- In 2020 we began pursuing a vortex chiller option
 - Located air compressor in "pump room" next to counting house, ran hose down to experiment hall. We've been stalled ~1 year on getting electrical rec fulfilled to wire compressor.
- Some questions for experiment input:
 - What amount of cooling is workable? What is ideal?
 - Do we need a new sample box designed and insulated for that level of cooling?
 - How difficult to swap boxes?
 - Does air filtration system removing air from box effect

Motion Table

- Two stage motion table for vertical and horizontal positioning of sample box.
- Controllable remotely from box in counting house.
 - Prone to getting stuck in a position that requires system reboot or expert intervention.
 - Remote control outside counting house (such as acnet) has proven challenging for expert and is still a work in progress.
 - We need to improve robustness of controls.
- "Beam center" is close to the far end of horizontal motion. Would like to recenter system to a coordinate useful to the users.
 - Require mechanical adjustments in contamination space.

Electronics in the beam enclosure

- Experiment input on cable length
- What are we trying to shield against?
 - Experiments interface with Anna on MARS models
- Work with RPO to identify possible shielding options onsite "movable" in enclosure
- We do have an electronics rack in enclosure or could setup table/stand pending distance requirements
- Ideal to move electrical outlet from wall to cave, needs an electrician.

Timeline

- My first guess based on input so far. Adjustable based on feedback
- During shutdown:
 - Get sample box decontaminated (RPO) and fiducialized (Carol coordinate alignment joint with PWC)
 - Replace enclosure camera (have ready spare at FTBF)
 - Install phosphor screen on box (have screen, might need to modify box mount
 - Get new air filtration hose adapters made (MSD), tested (FESS), and approved (ORC)
 - Identify location for electronics equipment and shielding options
 - Explore options for diode system in sample box (Paul R, Joe P coordinating)
 - Improve motion controls remote operation and reliability (Jerry)
- Over the course of the next year
 - Central data management solution (Evan + requested computing support + RPO stakeholder)
 - Deploy beam monitoring system (diode array or other) in sample box (Paul, Joe)
 - Expand air filtration system (if necessary) based on FESS and RPO recommendations
 - Develop active sample cooling capability

Ask

- ITA infrastructure upgrades will require additional resources beyond current operations
- 0.5 FTE over ~6 months of a computing expert with experience Django and FNAL cyber-security standards to bring IDM to mature and operational state, then low level maintenance support
 - As we expand features beyond a straight copy from CERN this requirement grows.
 Making this a lab wide tool would require some design support beyond the hosting/security need.
- 0.5 FTE instrumentation specialist to develop and coordinate beam position monitoring/motion table/sample cooling projects. Supplemental engineering and electrical support also needed for various aspects.
 - Paul R says engineering is available. Joe P has some time from ITA instrument side.
- RSO/RCT/RAF resources already captured elsewhere also make this possible. Its very difficult to evaluate improvements when we can barely maintain status quo.
- Material investment
 - Beam profile monitor instrumentation and readout
 - Sample box modifications/new box for Be7 contamination and active cooling
 - Possibly additional HEPA filters and/or chiller

Other changes to consider

