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What kind of calculations or improvements are needed where we can help?
» Neutrino-Nucleon scattering (NC/CC) for DIS regions
» Elastic scattering of electrons and neutrinos off Nucleons
» Real photon emission in neutrino Nucleon scattering events

» Effects of lepton masses when considering low energy cross sections
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Collaboration with Fermilab’s Joint Theoretical Experimental Group with the
goal to improve on the NLO corrections to neutrino nucleon scattering.

» Begin with the simpler process of electron proton scattering using low
energy EM proton form factors

» This is a great way to calibrate the method because of access to JLAB
data on e-p scattering

» The idea is to perform the full one loop calculation plus real radiation
and propose this as an addition to GENIE
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Resurts AND CONCLUSION

Low ENERGY ELECTRON PROTON SCATTERING

As far as we know GENIE is based on work by Vanderhaegen, and Maximon
and Tjon. These results however rely on certain approximations

» Both works use a “soft photon approximation” in the box diagrams

» In Vanderhaegen’s work the angular peaking approximation is used for
the radiative tail

» These approximations are to be avoided and the full virtual and real
NLO amplitude will be computed.
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The following serves as an example in where difficulties arise, take for
instance the proton vertex correction:

€QVu

Corresponding to the following integral

(—a*A} / NEO
PN <h%(ﬂ—A%Hﬂ—m@«m+wz—M%«m+02—M%

(=AY 20 2] / a4 ) 1 1
T T TN\ G (G 0 M (Ga + 02 - M) (B A2 R

Where
N = Tu(p, +1+MTE @) (P, + 1 +MTY (=)
M) = AR
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Because the integrals themselves can be simplified, this leads to being able to
use simpler methods to evaluate them.

» FeynCalc: Mathematica package for QFT related algebra (Performs the
Passarino-Veltman reduction)

» Package X: Mathematica package for QFT related algebra (Used to
analytically evaluate Passarino-Veltman functions)

» FeynHelper: A package to interlink FeynCalc to Package-X (Used to
merge the above two points)

» Vegas Algorithm: FORTRAN code MC to numerically evaluate the
resulting amplitudes from the above programs

» COLLIER Integral Library to numerically evaluate scalar functions for
n>4
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Strategies for box diagrams
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Strategies for box diagrams

Possible list di = ki
ossible lis 9
. do = (k1 — p1)
f denominators:
° | dz = (k1 + p2)? — M?
dy = (k1 + p3 —p1)2

Typical term N

ds = k? — A2
de = (k1 +p3s — p1)? — A?

under integration: dibl de dg’S dZ4 d§5 dg6



Strategies for box diagrams

Yok =k
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Issue! : 5 and 6 point functions are not easily handled in available
automated programs.

We can use partial fraction to decompose

1 1 and 1 1
k2(k2-A2) ~ dqds

(k1+p3-p1)2((k1+p3-Dp1)2—A2) ~ dudg

at the expense of getting derivative operators.



Strategies for box diagrams

—_—s _ 2
b — K, =kt
ﬁ—» > — 1y dy = (k1 — p1)
v l/ ds = (k1 + p2)? — M?
i \ \»\‘\\’1’; dy = (k1 +p3 — p1)
—> > > ds = ki — A°
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B
We can use partial fraction to decompose
1 1 1 _ 1
ki(ki-A2) - dids and (k14+p3-p1)%((k1+p3—p1)2—A2%) ~ dudg
at the expense of getting derivative operators.
1 AT\ (Y e ( I [ I D
A2 \KE—A2)  (m—1)! T S S S b
9 A = 0 in dimreg and nonzero

T=—7—% . . : .
where d(A7) in mass regularization for IR singularity



Strategies for box diagrams

b K di = ki
G RGN dy = (k1 —p1)?
\ 2 2 1 —P1
ds = (k1 + p2)? — M?
i\(‘\ \’l'\“\’@l’ dy = (k1 + p3s — p1)?
ds = k2 — A2
de = (k1 +ps — p1)? — A
FL F2+K\ '\’L\ 6 ( 1 T P3 Pl)
BN

- Now everything can be written up to D, functions and its derivatives!

- To simplify the power of the denominators, we can use IBP (integration by parts)
reduction techniques. To do so, we have to define well defined family. For the
above diagram there will be four such families.

X: dl,dz,dg,d4 Z. d5,d2,d3,d4
Y: d5) le d31 d6 Wi dll dz, d31 d6

But, there can be further issues with derivatives when too many scales are involved!



Strategies for box diagrams

o dy = k3
P — K Lo
{7\ —> > >— 1y dy = (k1 — p1)
ds = (k1 + p2)? — M?
i\(\’\ ?’\(‘\'1’31/ dy = (k1 +ps — p1)?
ds = k2 — A2
—> > , ,
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—

X: dq,do,d3,dy 2: ds,dy,d3, dy
V. d5,d2,d3,d6 W: dl,dz,dg,d6

But, there can be further issues with derivatives when too many scales are involved!

For example, the “y” family has scales "m, M, A“, which can be an issue to evaluate
the derivatives of the D, functions.

This can be tackled if we can remove one of the scales. We can write:

1 1 _ M?*—A?
WoAT = Eo(i—gnz Where § = Tym




Strategies for box diagrams

P K dy = ki
P et dy = (k1 — p1)?
\ 2 2 1 1012 ,
ds = (k1 +p2)*— M
i\(\’\ ?’\(‘\'1’31/ dy = (k1 + p3 — p1)?
ds = k? — A2
S>> , ,
ds = (k1 + ps — p1)? — A
—
2 A2
R = 1<;2—(11—g)z\427 where ¢ = #55%

Which allows us to expand the denominator w.r.t. small parameter ¢ and which
essentially removes the parameter A.

2 2 a rd
1 — L M + (k2£_]]\\442)3 _

k2 A2 — k2_DM2 T (k2—M2)2

It eventually leads to simpler D, functions at the expense of higher power in
the denominator; which again can be tackled using IBP reductions.
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€] = 4.4 GeV €] = 12 GeV € = 21.5 GeV
Q% =6 (GeV/c)? Q% =16 (GeV/c)? Q?% = 31.3 (GeV/c)?

CW MTj CW MTj CW MTj
Z0 —0.2187 —0.2187 —0.2330 —0.2330 —0.2323 —0.2323
77 —0.0569 —0.0569 —0.0517 —0.0517 —0.0625 —0.0625

—0.0146(C) —0.0174

~0.0165(C) —0.0243
—0.0185(W) —0.0243

—0.0173(C) —.0267
—0.0202(W) —.0267

$0.0194(C) +0.0116
+0.0174(W) +0.0116

$0.0279(C) +0.0185
+0.0250(W) 40.0185

72 +50 | —0.0146(W) —0.0174
+0.0096(C) +0.0068

s ++0.0096(W) +0.0068
—0.2902(C) —0.2930

5 —0.2902(W) —0.2930

~0.3012(C) —0.3090
—0.3032(W) —0.3090

—03121(C) —0.3214
—0.3150(W) —0.3214

Figure: comparision of Maximon and Tjon (MTj)[1] to our work, Crowe and Wackeroth (CW
P ) ]
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» Comparison of our box calculation to Oleksandr Tomalak’s work on Two
Photon exchange corrections .

» The next phase will be to add onto this core machinery the QED
corrections to neutrino-Nucleon scattering

» Possibility to institute a switch to move from a lower energy regime to
higher energy DIS regime using in house EW corrections to
neutrino-Nucleon scattering !

1Kwangwoo P., Baur U., Wackeroth D. , "Electroweak radiative corrections to neutrino-nucleon
scattering at NuTeV," arxiv.org/abs/0910.5013
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