Search for CP-violating Non-standard Interactions at the NOvA Experiment

Jeffrey Kleykamp On Behalf of the NOvA Collaboration Sept 2, 2022

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 1/74

NOvA Experiment

- Neutrino oscillation
- Charge parity (CP) violation
- Neutrino mass ordering
- Physics beyond the Standard Model

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 2/74

NOvA Experiment

- Neutrino oscillation
- Charge parity (CP) violation
- Neutrino mass ordering

• Physics beyond the Standard Model Non-standard Interactions

Neutrino Oscillation

- As neutrinos propagate, they change flavor
- A direct consequence of neutrino masses
	- One of the few unexplained hiccups in the standard model

Next slide: The model

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 4/74

Oscillation Model

U = νe ν1 ν2 νμ Courtesy of the JUNO collaboration

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 5/74

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 6/74

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 7/74

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 8/74

Matter Effects

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 9/74

Mikheyev–Smirnov–Wolfenstein (MSW) Effect

- \bullet v_e different from v_u and v_r in matter
- \bullet v_e scatters coherently against matter's electron cloud
	- Similar to how light scatters, causing refraction
- Reversed for anti-neutrinos

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 11/74

Matter Effect Model

$$
\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

$$
V = V_e - V_{other} = \sqrt{2} G_F n_e
$$

Density of electron cloud which can change based on position. Ultimately leads to resonances when oscillation frequency \sim MSW frequency

arXiv:hep-ph/0305106

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 12/74

Non-Standard Interactions

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 13/74

• NSI are an BSM extension of the standard matter effect

q = constituents of matter: electrons, up/down quark

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 14/74

• Effective approach

$$
\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f^*} & \varepsilon_{\mu\mu}^{f^*} & \varepsilon_{\mu\tau}^{f^*} \\ \varepsilon_{e\tau}^{f^*} & \varepsilon_{\mu\tau}^{f^*} & \varepsilon_{\tau\tau}^{f^*} \end{bmatrix}
$$

f = e, u, d

• Off-diagonal terms can be complex

$$
- Complex phases δαβ
$$

\n
$$
\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{\mu\tau}^{f} & \varepsilon_{\tau\tau}^{f} \end{bmatrix}
$$

\nf = e, u, d
\n
$$
\varepsilon_{\alpha\beta}^{f} = \left| \varepsilon_{\alpha\beta}^{f} \right| e^{i\delta_{\alpha\beta}^{f}}
$$

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 16/74

Experimental Simplification

$$
\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f^{*}} & \varepsilon_{\mu\mu}^{f^{*}} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f^{*}} & \varepsilon_{\tau\tau}^{f^{*}} \end{bmatrix}
$$

Redefine sum of matrices to single effective matrix

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 17/74

Experimental Simplification

$$
\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f^{*}} & \varepsilon_{\mu\mu}^{f^{*}} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f^{*}} & \varepsilon_{\tau\tau}^{f^{*}} \end{bmatrix}
$$

Redefine sum of matrices to single effective matrix $\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} \delta_e + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu})^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau})^* & (\varepsilon_{\mu\tau})^* & \varepsilon_{\tau\tau} \end{pmatrix}.$ Where $\epsilon = 1 \rightarrow$ same size as MSW effect Assume all NSI comes from electrons and correct if theory says up or down quark.W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 18/74

Correction Factors

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 19/74

Careful

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 20/74

$$
\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} \delta_e + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu})^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau})^* & (\varepsilon_{\mu\tau})^* & \varepsilon_{\tau\tau} \end{pmatrix}
$$

• Off-diagonal terms can be written with a CP violating phase

$$
\varepsilon_{\alpha\beta} = |\varepsilon_{\alpha\beta}| e^{i\delta_{\alpha\beta}}
$$

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 21/74

Effect of Each Parameter

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 22/74

Effect of Each Parameter

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 23/74

Effect of Phase: eτ sector

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 24/74

Effect of Phase: eμ sector

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 25/74

What we know

Icecube

Icecube

- Very tight constraints on NSI using atmospheric neutrinos
- \bullet Assumes $\delta_{\text{CP}} = 0$ Phys. Rev. D104(Oct, 2021) 072006

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 28/74

Icecube: Tighter μτ Limits

- Measuring $\text{Re}(\varepsilon_{\mu\tau})$ & $\text{Im}(\varepsilon_{\mu\tau})$
- Using up to TeV level neutrinos CL Region 90% CL Region

Phys. Rev. Lett. 129, 011804

δ _{CP} and δ _{eτ}

- $\bullet \; P(\nu_{\mu} \rightarrow \nu_{e})$ \sim sin δ cp & cos δ cp terms $\sim \varepsilon_{\text{er}} \sin (\delta_{\text{CP}} + \delta_{\text{er}})$, $\varepsilon_{\text{er}} \cos (\delta_{\text{CP}} + \delta_{\text{er}})$
- $A \varepsilon_{\text{et}}$ grows, $\delta_{\text{CP}} + \delta_{\text{et}}$ terms become dominant effect
	- $-$ Similar in $\varepsilon_{e\mu}$

Phys.Rev.D77:013007,2008

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 30/74

MINOS

- Measure vs $\delta_{cp}+\delta_{er}$
	- Largest terms are proportional to $\epsilon_{\text{et}} \cos(\delta_{\text{cp}}+\delta_{\text{et}})$
	- Profile over the difference δ_{cp} - δ_{er}

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 31/74

NSI's Effects on Standard Neutrino Oscillation Results

Effect on Std. Osc. Parameters

• Presence of NSI can bias interpretation of std. osc. parameters

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 33/74

T2K-NOvA + NSI

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 34/74

T2K-NOvA + NSI

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 35/74

T2K-NOvA + NSI

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 36/74
Measuring NSI at the NOvA Experiment

Neutrino Flux from NuMI beam

Neutrino Flux from NuMI beam

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 39/74

Protons on Target

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 40/74

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 41/74

Reminder of Std. Osc. Result

- \bullet Published August 1st, 2022
	- *Improved measurement of neutrino oscillation parameters by the NOvA experiment*
	- Phys. Rev. D 106, 032004
- Today's results are an NSI extension of the previous measurement

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 42/74

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 43/74

Finding Neutrinos w/ CNNs

- 3rd generation
- Data-driven validation
- Increases effective exposure

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 44/74

Energy Estimation

- $\bullet E_v \leftarrow E_l \& E_{\text{hadronic}}$
	- $1 > 3\%$
	- $~ 30\%$
- \bullet <E_v> ~ 9% (v_{μ})
- \bullet <E_v> ~ 11% (v_e)

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 45/74

νe Reconstructed Spectra

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 46/74

ND Extrapolation

$Extrapolating ND \rightarrow FD$ mitigates
both "known" and "unknown" effects

Slide courtesy of Jeremy Wolcott's 2020-09-18 W&C

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 47/74

ND Data Exploitation

- Data is split into 4 quartiles based on hadronic energy fraction
	- $-<$ E_v $>$ better for low fraction
- Within each quartile, data is further split into bins of P_T
	- Helps with controlling differences between ND and FD acceptance

Final Systematic Uncertainty

• Statistical uncertainty \sim 10%

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 49/74

NSI and the Analysis

- Need to be careful with two components when measuring NSI
- Rock density
- Constraints used for nuisance parameters

ρ Intro

- Density important to NSI
	- Signal ~ ε * ρ
- Neutrinos go up to 11km underground

CRUST Model

- Model of crust densities
- 1x1 degree longitude and latitude resolution
	- 12 chunks between Fermilab and Ash River
- Predicts an average density of 2.74 g/cm³

Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013. http://igppweb.ucsd.edu/~gabi/rem.html

ρ Update: Uncertainty

- Compare CRUST model to real data
- Kola bore deepest bore
- Wyoming oil bore geologically similar

Kola Data: Acta Geodyn. Geomater., Vol. 11, No. 2 (174), 165–174, 20141

- Also direct bores from the MINOS cave
- 3.7% uncertainty

Wyoming Data: L.A. Beyer and F.G. Clutsom, Density and porosity of oil reservoirs 1055 and overlying formations from borehole gravity measurements, Gebo Oil 1056 Field, Hot Springs County, Wyoming, Report, 1978 doi:10.3133/oc88

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 53/74

Constraints

- NOvA is insensitive to some oscillation parameters
	- External sources are used to constrain those parameters
		- e.g. Particle Data Group or NuFit
- Combine results from various experiments

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 54/74

NSI Effects

- In principle, NSI could effect the measurement of certain parameters
	- e.g. Solar + KamLAND prefer NSI at 1.9 sigma

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 55/74

Reactor-only Constraints

- Rely only on reactor experiments
	- Daya Bay, RENO, Chooz and KamLAND
- \bullet $\Delta \rm{m^2_{21}}$ (10⁻⁵eV²) = 7.54 ±0.19
	- PDG: 7.53 ± 0.18
- \cdot sin² $\theta_{12} = 0.304 \pm 0.042$
	- $-$ PDG: 0.307 \pm 0.013
- \cdot sin² $\theta_{13} = 0.0218 \pm 0.0007$

 $\sin^2\theta_{12}$ PDG:Reactor-Only: 0.25 0.27 0.29 0.31 0.33 0.35

Results

eμ Spectra

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 58/74

eτ Spectra

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 59/74

eμ Result

NOvA Preliminary

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 60/74

eτ Result

NOvA Preliminary

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 61/74

Degeneracy

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 62/74

Degeneracy

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 63/74

Dual Degeneracy

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 64/74

Degeneracy vs Delta

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 65/74

eτ Result

NOvA Preliminary

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 66/74

eτ Result: Comparison to Minos

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 67/74

Effect of NSI on Standard Oscillation Parameters

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 68/74

$\Delta \mathrm{m}^2{}_{32}$ vs $\sin^2\!\theta_{23}$ with eµ model

νμ disappearance unaffected by NSI

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 69/74

$\Delta \mathrm{m}^2{}_{32}$ vs $\sin^2\!\theta_{23}$ with eτ model

νμ disappearance unaffected by NSI

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 70/74

$\sin^2\theta_{23}$ vs δ_{CP} with eu model

ν^e appearance affected by non-zero NSI

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 71/74

$\sin^2\theta_{23}$ vs δ_{CP} with et model

ν^e appearance affected by non-zero NSI

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 72/74
Conclusion

- NOvA alone doesn't need NSI to explain spectra
- \bullet $\varepsilon_{e\mu}$ < 0.3
- $\epsilon_{\rm er} > 0.4$ ruled out for most of phase space
	- $-$ High ε_{er} degeneracy
- \bullet δ _{CP} measurements difficult with non-zero NSI

Thank you

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 74/74

Backup Slides

MuTau

NOvA Preliminary

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 77/74

EMu

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

78/74

ETau

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

79/74

Sensitivity

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 80/74

Sensitivity

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 81/74

Measuring $ρ$

- Seismology
	- $-$ Depth $=$ 0km- R_{earth}
- Gravity
	- Depth = 0km-moho (35km)
	- Uses assumptions based on seismology data
- Direct bores
	- 1-3 km fracking bore holes
	- 12km superdeep record

MEC Model

- Valencia MEC tuned to data
- NN/PP vs NP $\mu_{\scriptscriptstyle \perp}$ vs MINERvA \mathbf{v} systematics **NOvA Preliminary NOvA Preliminary** 25 25 No NOvA Weights Neutrino Beam Neutrino Beam Default GENIE v_{\shortparallel} + $\overline{v}_{\shortparallel}$ CC Selection NOvA 2020 Tune v_{\shortparallel} + $\overline{v}_{\shortparallel}$ CC Selection ND Data \bullet ND Data 20 20 **I**MEC MEC 10⁴ Events 10⁴ Events ΩF QE 15 Res **RES DIS** Other 0.1 0.2 0.3 0.4 0.5 $\overline{0.6}$ 0.1 0.2 0.3 0.4 0.5 $\overline{0.6}$ W&C, Fermilab V isible E_{had} (GeV) and Mississippi), Number 2nd, 2022 V isible E_{had} (GeV) and V isible E_{had} (GeV)

Effect of NSI on Reconstructed Spectra

eμ

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 85/74

et

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Sensitivities

 δ _{CP}

NOvA Simulation

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 88/74

 $\Delta \text{m}^2{}_{32}$

NOvA Simulation

$\sin^2\theta_{23}$

NOvA Simulation

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

90/74

 $\epsilon_{\alpha\beta}$

NOvA Simulation

J. Kleykamp (U. of Mississippi), NOvA

Degeneracy vs Delta

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 92/74

eτ Sensitivity

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 93/74

Future eτ Sensitivity

NOvA Simulation

Future statistics not quite enough to remove high ε_{er} band.

Looking into additional improvements to the analysis

Mikheyev–Smirnov–Wolfenstein (MSW) Effect

Next slide: The math view

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 95/74

NSI in the Sun

W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA 96/74