Search for CP-violating Non-standard Interactions at the NOvA Experiment

Jeffrey Kleykamp On Behalf of the NOvA Collaboration Sept 2, 2022

W&C, Fermilab - Sept 2nd, 2022

NOvA Experiment

- Neutrino oscillation
- Charge parity (CP) violation
- Neutrino mass ordering
- Physics beyond the Standard Model

W&C, Fermilab - Sept 2nd, 2022

NOvA Experiment

- Neutrino oscillation
- Charge parity (CP) violation
- Neutrino mass ordering

Physics beyond the Standard Model
 Non-standard Interactions

Neutrino Oscillation

- As neutrinos propagate, they change flavor
- A direct consequence of neutrino masses
 - One of the few unexplained hiccups in the standard model

Next slide: The model

W&C, Fermilab - Sept 2nd, 2022

Oscillation Model

$$\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} \bigvee_{\mathbf{v}_{e}} \bigvee_{\mathbf{v}_{1}} & m^{2} \\ \downarrow & \downarrow & \downarrow \\ \mathbf{v}_{2} \end{pmatrix} \xrightarrow{\mathbf{v}_{atm}} \bigvee_{\mathbf{v}_{1}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{1}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{1}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{1}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{1}} \bigvee_{\mathbf{v}_{2}} \bigvee_{\mathbf{v}_{2$$

W&C, Fermilab - Sept 2nd, 2022

W&C, Fermilab - Sept 2nd, 2022

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Matter Effects

W&C, Fermilab - Sept 2nd, 2022

Mikheyev–Smirnov–Wolfenstein (MSW) Effect

- ν_e different from ν_μ and ν_τ in matter
- v_e scatters coherently against matter's electron cloud
 - Similar to how light scatters, causing refraction
- Reversed for anti-neutrinos

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Matter Effect Model

$$\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{V} = \mathbf{V}_{e} - \mathbf{V}_{other} = \sqrt{2}G_{F}n_{e}$$

Density of electron cloud which can change based on position. Ultimately leads to resonances when oscillation frequency ~ MSW frequency

arXiv:hep-ph/0305106

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Non-Standard Interactions

W&C, Fermilab - Sept 2nd, 2022

• NSI are an BSM extension of the standard matter effect

q = constituents of matter: electrons, up/down quark

W&C, Fermilab - Sept 2nd, 2022

• Effective approach

$$\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^{f} \end{bmatrix}$$
$$\mathbf{f} = \mathbf{e}, \mathbf{u}, \mathbf{d}$$

• Off-diagonal terms can be complex

- Complex phases
$$\delta_{\alpha\beta}$$

$$\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^{f} \end{bmatrix}$$

$$f = e, u, d$$

$$\varepsilon_{\alpha\beta}^{f} = |\varepsilon_{\alpha\beta}^{f}| e^{i\delta_{\alpha\beta}^{f}}$$

Experimental Simplification

$$\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^{f} \end{bmatrix}$$

Redefine sum of matrices to single effective matrix

Experimental Simplification

$$\mathcal{H} = U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger} + \sum_{f} V_{f} \begin{bmatrix} \delta_{ef} + \varepsilon_{ee}^{f} & \varepsilon_{e\mu}^{f} & \varepsilon_{e\tau}^{f} \\ \varepsilon_{e\mu}^{f*} & \varepsilon_{\mu\mu}^{f} & \varepsilon_{\mu\tau}^{f} \\ \varepsilon_{e\tau}^{f*} & \varepsilon_{\mu\tau}^{f*} & \varepsilon_{\tau\tau}^{f} \end{bmatrix}$$

Redefine sum of matrices to single effective matrix $\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} \delta_e + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu})^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau})^* & (\varepsilon_{\mu\tau})^* & \varepsilon_{\tau\tau} \end{pmatrix}$ Where $\varepsilon = 1 \rightarrow$ same size as MSW effect Assume all NSI comes from electrons and correct if theory says up or down quark. W&C, Fermilab - Sept 2nd, 2022 J. Kleykamp (U. of Mississippi), NOvA

Correction Factors

W&C, Fermilab - Sept 2nd, 2022

Careful

W&C, Fermilab - Sept 2nd, 2022

$$\mathcal{H} = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^{\dagger} + V \begin{pmatrix} \delta_e + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ (\varepsilon_{e\mu})^* & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau} \\ (\varepsilon_{e\tau})^* & (\varepsilon_{\mu\tau})^* & \varepsilon_{\tau\tau} \end{pmatrix}$$

 Off-diagonal terms can be written with a CP violating phase

$$\varepsilon_{\alpha\beta} = \left|\varepsilon_{\alpha\beta}\right| e^{i\delta_{\alpha\beta}}$$

W&C, Fermilab - Sept 2nd, 2022

Effect of Each Parameter

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Effect of Each Parameter

W&C, Fermilab - Sept 2nd, 2022

Effect of Phase: eτ sector

W&C, Fermilab - Sept 2nd, 2022

Effect of Phase: eµ sector

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

What we know

W&C, Fermilab - Sept 2nd, 2022

Icecube

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Icecube

- Very tight constraints on NSI using atmospheric neutrinos
- Assumes $\delta_{CP} = 0$

Phys. Rev. D104(Oct, 2021) 072006

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Icecube: Tighter μτ Limits

- Measuring $\text{Re}(\epsilon_{\mu\tau}) \& \text{Im}(\epsilon_{\mu\tau})$
- Using up to TeV level
 neutrinos

Phys. Rev. Lett. 129, 011804

δ_{CP} and δ_{et}

- $P(v_{\mu} \rightarrow v_{e})$ ~ $\sin \delta_{CP} \& \cos \delta_{CP} \text{ terms}$ ~ $\epsilon_{e\tau} \sin (\delta_{CP} + \delta_{e\tau}), \epsilon_{e\tau} \cos (\delta_{CP} + \delta_{e\tau})$
- A $\epsilon_{e\tau}$ grows, $\delta_{CP} + \delta_{e\tau}$ terms become dominant effect
 - Similar in $\epsilon_{\rm e\mu}$

Phys.Rev.D77:013007,2008

W&C, Fermilab - Sept 2nd, 2022

MINOS

- Measure vs $\delta_{cp} + \delta_{et}$
 - Largest terms are proportional to $\epsilon_{e\tau} \cos(\delta_{cp} + \delta_{e\tau})$
 - Profile over the difference δ_{cp} - δ_{et}

W&C, Fermilab - Sept 2nd, 2022

NSI's Effects on Standard Neutrino Oscillation Results

Effect on Std. Osc. Parameters

 Presence of NSI can bias interpretation of std. osc.
 parameters

W&C, Fermilab - Sept 2nd, 2022

$T_2K-NOvA + NSI$

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022

$T_2K-NOvA + NSI$

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

$T_2K-NOvA + NSI$

Phys. Rev. Lett. 126, 051802 (2021)

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA
Measuring NSI at the NOvA Experiment

W&C, Fermilab - Sept 2nd, 2022

Neutrino Flux from NuMI beam

Neutrino Flux from NuMI beam

W&C, Fermilab - Sept 2nd, 2022

Protons on Target

W&C, Fermilab - Sept 2nd, 2022

W&C, Fermilab - Sept 2nd, 2022

Reminder of Std. Osc. Result

- Published August 1st, 2022
 - Improved measurement of neutrino oscillation parameters by the NOvA experiment
 - Phys. Rev. D 106, 032004
- Today's results are an NSI extension of the previous measurement

W&C, Fermilab - Sept 2nd, 2022

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Finding Neutrinos w/ CNNs

- 3rd generation
- Data-driven validation
- Increases effective exposure

W&C, Fermilab - Sept 2nd, 2022

Energy Estimation

- $E_v \leftarrow E_l \& E_{hadronic}$
 - $< E_l > \sim 3\%$
 - $< E_{hadronic} > \sim 30\%$
- $<\!E_{\nu}\!> \sim 9\% (\nu_{\mu})$
- $< E_{\nu} > \sim 11\% (v_e)$

W&C, Fermilab - Sept 2nd, 2022

ve Reconstructed Spectra

W&C, Fermilab - Sept 2nd, 2022

ND Extrapolation

Extrapolating ND → FD mitigates both "known" and "unknown" effects

Slide courtesy of Jeremy Wolcott's 2020-09-18 W&C

W&C, Fermilab - Sept 2nd, 2022

ND Data Exploitation

- Data is split into 4 quartiles based on hadronic energy fraction
 - $< E_v >$ better for low fraction
- Within each quartile, data is further split into bins of $P_{\rm T}$
 - Helps with controlling differences between ND and FD acceptance

W&C, Fermilab - Sept 2nd, 2022

Final Systematic Uncertainty

• Statistical uncertainty ~10%

W&C, Fermilab - Sept 2nd, 2022

NSI and the Analysis

- Need to be careful with two components when measuring NSI
- Rock density
- Constraints used for nuisance parameters

ρ Intro

- Density important to NSI
 - Signal ~ $\epsilon * \rho$
- Neutrinos go up to 11km underground

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

~ 7 miles (~11 km)

CRUST Model

- Model of crust densities
- 1x1 degree longitude and latitude resolution
 - 12 chunks between Fermilab and Ash River
- Predicts an average density of 2.74 g/cm³

Laske, G., Masters., G., Ma, Z. and Pasyanos, M., Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013. http://igppweb.ucsd.edu/~gabi/rem.html

ρ Update: Uncertainty

- Compare CRUST model to real data
- Kola bore deepest bore
- Wyoming oil bore geologically similar

Kola Data: Acta Geodyn. Geomater., Vol. 11, No. 2 (174), 165–174, 20141

- Also direct bores from the MINOS cave
- 3.7% uncertainty

Wyoming Data: L.A. Beyer and F.G. Clutsom, Density and porosity of oil reservoirs 1055 and overlying formations from borehole gravity measurements, Gebo Oil 1056 Field, Hot Springs County, Wyoming, Report, 1978 doi:10.3133/oc88

W&C, Fermilab - Sept 2nd, 2022

Constraints

- NOvA is insensitive to some oscillation parameters
 - External sources are used to constrain those parameters
 - e.g. Particle Data Group or NuFit
- Combine results from various experiments

W&C, Fermilab - Sept 2nd, 2022

NSI Effects

- In principle, NSI could effect the measurement of certain parameters
 - e.g. Solar + KamLAND prefer NSI at 1.9 sigma

W&C, Fermilab - Sept 2nd, 2022

Reactor-only Constraints

- Rely only on reactor experiments
 - Daya Bay, RENO, Chooz and KamLAND
- $\Delta m^2_{21} (10^{-5} eV^2) = 7.54 \pm 0.19$
 - PDG: 7.53 ± 0.18
- $\sin^2 \theta_{12} = 0.304 \pm 0.042$
 - PDG: 0.307 ± 0.013
- $\sin^2\theta_{13} = 0.0218 \pm 0.0007$

W&C, Fermilab - Sept 2nd, 2022

Results

W&C, Fermilab - Sept 2nd, 2022

eµ Spectra

W&C, Fermilab - Sept 2nd, 2022

eτ Spectra

W&C, Fermilab - Sept 2nd, 2022

eµ Result

NOvA Preliminary

eτ Result

NOvA Preliminary

J. Kleykamp (U. of Mississippi), NOvA

61/74

Degeneracy

W&C, Fermilab - Sept 2nd, 2022

Degeneracy

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

63/74

Dual Degeneracy

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

64/74

Degeneracy vs Delta

W&C, Fermilab - Sept 2nd, 2022

eτ Result

NOvA Preliminary

eτ Result: Comparison to Minos

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

67/74

Effect of NSI on Standard Oscillation Parameters

W&C, Fermilab - Sept 2nd, 2022

$\Delta m^{2}_{~32}~vs~sin^{2}\theta_{23}$ with eµ model

 v_{μ} disappearance unaffected by NSI

W&C, Fermilab - Sept 2nd, 2022

$\Delta m_{32}^2 vs sin^2 \theta_{23}$ with et model

 ν_{μ} disappearance unaffected by NSI

W&C, Fermilab - Sept 2nd, 2022

$sin^2\theta_{23}$ vs δ_{CP} with eµ model

 v_e appearance affected by non-zero NSI

W&C, Fermilab - Sept 2nd, 2022

$sin^2\theta_{23}$ vs δ_{CP} with $e\tau$ model

 v_e appearance affected by non-zero NSI

W&C, Fermilab - Sept 2nd, 2022
Conclusion

- NOvA alone doesn't need NSI to explain spectra
- $\epsilon_{e\mu} < 0.3$
- $\epsilon_{e\tau} > 0.4$ ruled out for most of phase space
 - High $\epsilon_{e\tau}$ degeneracy
- δ_{CP} measurements difficult with non-zero NSI

Thank you

W&C, Fermilab - Sept 2nd, 2022

Backup Slides

MuTau

NOvA Preliminary

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

EMu

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

ETau

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Sensitivity

Sensitivity

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

Measuring ρ

- Seismology
 - Depth = 0km- R_{earth}
- Gravity
 - Depth = 0km-moho (35km)
 - Uses assumptions based on seismology data
- Direct bores
 - 1-3 km fracking bore holes
 - 12km superdeep record

MEC Model

Valencia MEC tuned to data

W&C, Fe

 NN/PP vs NP vs MINERvA systematics
NovA Preliminary
NovA Preliminary
NovA Weights Neutrino Beam v_u + v_u c C Selection

 $\mu_{}$

Effect of NSI on Reconstructed Spectra

eμ

ετ

W&C, Fermilab - Sept 2nd, 2022

Sensitivities

 δ_{CP}

NOvA Simulation

W&C, Fermilab - Sept 2nd, 2022

 Δm^2_{32}

NOvA Simulation

$sin^2\theta_{23}$

NOvA Simulation

W&C, Fermilab - Sept 2nd, 2022

 $\epsilon_{\alpha\beta}$

NOvA Simulation

W&C, Fermilab - Sept 2nd, 2022

Degeneracy vs Delta

eτ Sensitivity

Future et Sensitivity

NOvA Simulation

Future statistics not quite enough to remove high $\epsilon_{e\tau}$ band.

Looking into additional improvements to the analysis

 $\epsilon_{e\tau}$

Mikheyev–Smirnov–Wolfenstein (MSW) Effect

Next slide: The math view

W&C, Fermilab - Sept 2nd, 2022

J. Kleykamp (U. of Mississippi), NOvA

NSI in the Sun

W&C, Fermilab - Sept 2nd, 2022