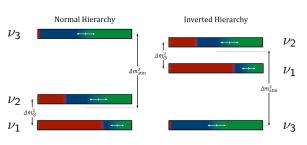
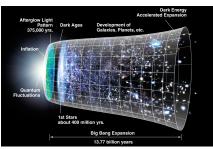

Contents

- 1. Neutrino Oscillations: what and why?
- 2. Measuring Neutrino Oscillations with NOvA
- 3. Neutrino Events, Data, Predictions
- 4. Bayesian Inference into the PMNS model
- 5. (No) Reactor constraint

Artur Sztuc FNAL JETP 24 June 2022

Neutrino Oscillations: what and why?

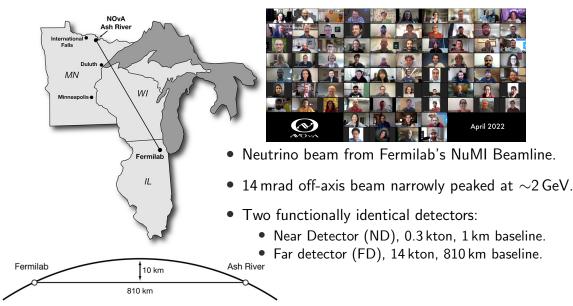

Neutrino oscillation physics



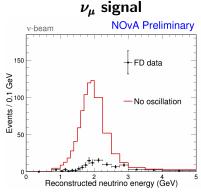
- Flavour eigenstates; $\nu_{\rm e}$, ν_{μ} and ν_{τ} (interact)
- Mass eigenstates; ν_1 , ν_2 and ν_3 (propagate)

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\mathrm{CP}}} & 0 & c_{13} \end{pmatrix}}_{\text{atmospheric, beam}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{solar, reactor}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \qquad s_{ij} = \sin\theta_{ij} \\ c_{ij} = \cos\theta_{ij} \\ \text{Super-K, IceCube,} \\ \text{Opera, NOvA, T2K}} \\ \text{Opera, NOvA, T2K} \\ \text{RENO, NOvA, T2K} \\ \text{RENO, NOvA, T2K} \\ \text{KamLAND}$$

Neutrino oscillation physics

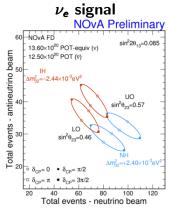

- δ_{CP} : Charge-Parity violation in neutrino sector. Potential contribution to matter-antimatter asymmetry in the universe.
- Mass Ordering: Symmetries in neutrino physics, is ν_1 the lightest and ν_3 the heaviest? Has consequences for double-beta decay search.
- θ_{23} : Larger or smaller than 45? Important for ν_{τ} ν_{μ} symmetries.

Neutrino oscillation physics


- How can we tell if PMNS is correct?
- First, see if our data fits well with the PMNS model.
- Second, cross-check with experiments at different baselines.
- Third, cross-check with different neutrino oscillations. Reactors measure $P(\bar{\nu}_e \to \bar{\nu}_e)$ and accelerators $P(\nu_\mu \to \nu_e)$ & $P(\bar{\nu}_\mu \to \bar{\nu}_e)$.
 - Both sensitive to θ_{13} .

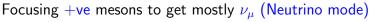
$$\begin{pmatrix} \frac{\nu_{e}}{\nu_{\mu}} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\mathrm{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
 atmospheric, beam reactor, beam solar, reactor Super-K, IceCube, Double Chooz, Daya Bay, Opera, NOvA, T2K RENO, NOvA, T2K KamLAND

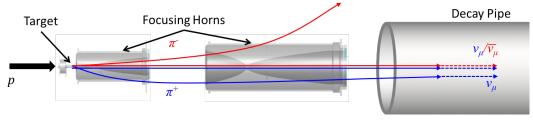
NOvA Experiment


Neutrino oscillations with accelerators

Location of the dip: $|\Delta m_{32}^2|$

(does not depend on the sign)

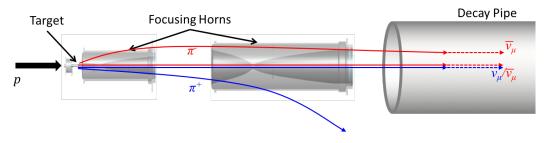

Depth of the dip: $\sin^2(2\theta_{23})$ Difficult to separate $\theta_{23} > 45$ and $\theta_{23} < 45$ Is $\nu_{\mu} = \nu_{\tau}$ in ν_{3} mass state?



Combination of $\nu_{\rm e}$ and $\bar{\nu}_{\rm e}$ excess; $\sin^2(\theta_{23}), \, \sin^2(\theta_{13}), \, \delta_{CP}$ Good dependence on the sign of Δm_{32}^2

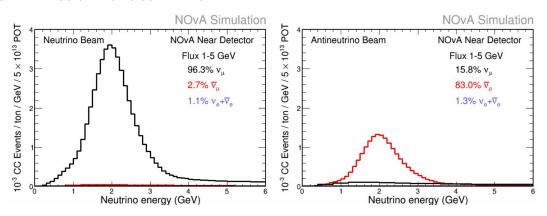
Channel for CP violation detection

NuMI Neutrino beamline

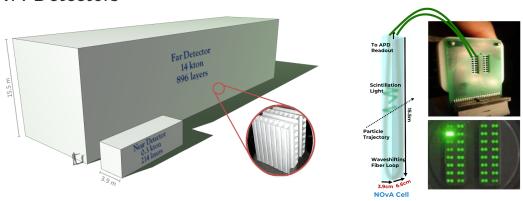


- Beam of 120 GeV protons incident on carbon target.
- Focusing +ve or -ve mesons to obtain mostly ν_{μ} or $\bar{\nu}_{\mu}$.
 - Achieved by reversing the polarity of the magnetic horns.
- Neutrinos appear from the decaying mesons. 675 m decay pipe.

Artur Sztuc FNAL JETP 24 June 2022

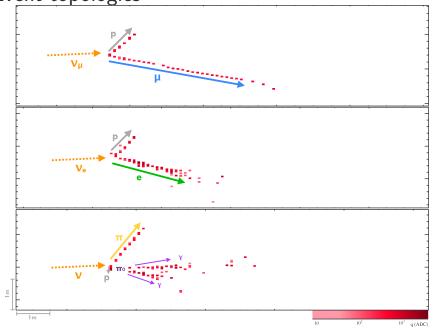

NuMI Neutrino beamline

Focusing -ve mesons to get mostly $\bar{\nu}_{\mu}$ (Antineutrino mode)


- Beam of 120 GeV protons incident on carbon target.
- Focusing +ve or -ve mesons to obtain mostly ν_{μ} or $\bar{\nu}_{\mu}$.
 - Achieved by reversing the polarity of the magnetic horns.
- Neutrinos appear from the decaying mesons. 675 m decay pipe.

NuMI Neutrino beamline

- Very low-contamination with in both neutrino and anti-neutrino mode.
- Collected 37×10^{20} protons-on-target. Thank you Fermilab!
- Recent power record: 893 kW!



- Extruded cells filled with liquid scintillator, with 62% active volume.
- Wavelength-shifting fiber collects and transports light to Avalanche photodiode.
 - Each APD sees 32 NOvA cells.
- Cells with alternating horizontal & vertical planes for 3D reconstruction.
- Optimized for electron showers.

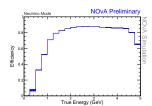
Artur Sztuc FNAL JETP 24 June 2022 12

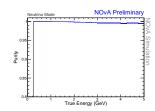
Event topologies

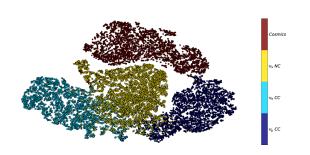
 u_{μ} CC

 ν_e CC

NC

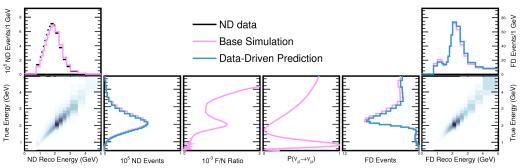



Pre-selections:

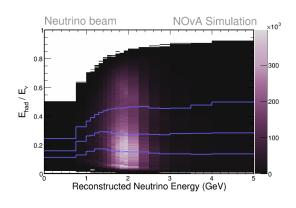

- Contained inside the detector.
- Inside of the beam spill-window.
- Cosmic particles rejection via BDT.

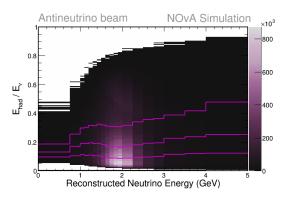
Event Identification:

- Modern CNN techniques used to identify neutrino flavour.
- Learns features of different event topologies.
- Data-driven validations based on ND and FD control samples.
- Results in high purity samples.

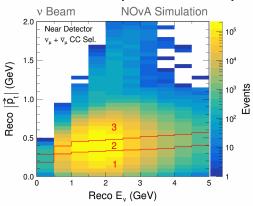


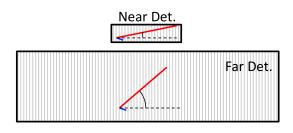
15


ND→FD Extrapolation

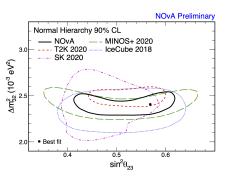


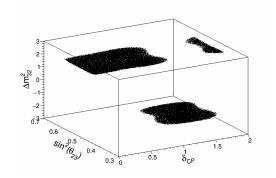
- Take advantage of detector similarity to extrapolate ND predictions to FD.
- Many systematic effects e.g. cross-sections, flux and efficiency are shared.
- Helps dealing with the "unknown unknowns".
- Extrapolate different kinematic samples separately to deal with Near/Far acceptance differences.


ND \rightarrow FD Extrapolation: $E_{\rm had}$



- The energy resolution varies between the detectors.
- Extrapolation split in four $E_{\rm had}/E_{\nu}$ quartiles.
- Matches the Hadronic energy resolution between ND and FD.

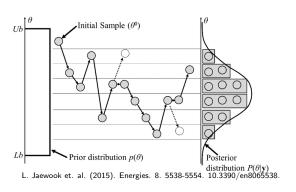

ND \rightarrow FD Extrapolation: Lepton $|p_T|$


- Different lepton angle distributions due to the difference in detectors' size.
- Extrapolation split in three ranges of lepton transverse momenta.
- Done separately for each $E_{\rm had}$ quartile.
- Matches the detector acceptances between ND and FD.

Fitting/Sampling techniques

- NOvA fits 10 data samples: $4\nu_{\mu}$, $4\bar{\nu}_{\mu}$, $1\nu_{e}$ and $1\bar{\nu}_{e}$.
- All the previous NOvA results were Frequentist with use of profiling.
- New Bayesian frameworks implemented in NOvA.
- New studies now easier: Jarlskog-Invariant, NOvA-only θ_{13} , Bayes factors and possibly more!
- Other experiments often provide Marginalized and/or Bayesian results.

Markov Chain Monte Carlo for NOvA



Bayes Theorem:

$$\mathcal{P}(ec{ heta}|D) pprox \mathcal{P}(D|ec{ heta})\mathcal{P}(ec{ alpha})$$
Posterior $pprox$ Likelihood $imes$ Prior
Posterior $pprox e^{-rac{\chi^2}{2}} imes$ Prior

- Bayesian results given in terms of posterior probability distributions.
- Need to produce N-dimensional probability distribution for marginalized results.
- MCMC generates samples on N-dimensional.
 - Sample density corresponds to posterior probability density.

Markov Chain Monte Carlo for NOvA

Bayes Theorem:

$$\mathcal{P}(\vec{\theta}|D) \approx \mathcal{P}(D|\vec{\theta})\mathcal{P}(\vec{a})$$

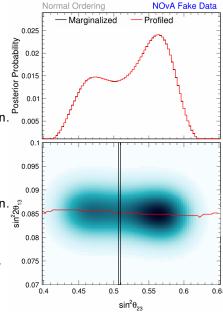
 $Posterior \approx Likelihood \times Prior$ $Posterior \approx e^{-\frac{\chi^2}{2}} \times Prior$

- MCMC generates samples by iteratively deviating parameters from their previous values.
- At each iteration we can either accept, or reject the step.
 - Accept: new step added to the end of the chain.
 - Reject: previous values repeated at the end of the chain.
- Over time, this "chain" ensemble starts resembling posterior probability.

Markov Chain Monte Carlo for NOvA

Stanislaw Ulam

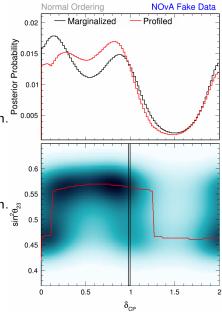
- Two algorithms in NOvA: Metropolis-Hastings and Hamiltonian MCMC.
- Hamiltonian MCMC is based on Stan library (https://mc-stan.org).


- Stanislaw Ulam invented the methods of Monte-Carlo.
- Metropolis-Hastings was written from scratch in-house.
 - Named Aria after Arianna Rosenbluth, who first implemented the method.
- Importantly, both algorithms produce identical results.

References: Metropolis-Hastings doi:10.1063/1.1699114, Hamiltonian doi:10.1016/0370-2693(87)91197-X

Artur Sztuc FNAL JETP 24 June 2022

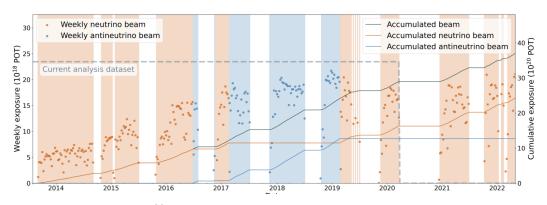
Bayesian vs Frequentist, Marginalization vs Profiling


- MCMC uses marginalization rather than profiling.
 - Not necessarily reserved to Bayesian methods!
 - Profiling: Maximize parameters not shown.
 - Marginalization: Integrate over parameters not shown.
- Example: marginalizing/profiling over $\sin^2 2\theta_{13}$.
 - Line of best fit to profile over $\sin^2 2\theta_{13}$.
 - Box with probabilities to sum over for marginalization.
- Use posterior probability densities, not χ^2 .
 - Bayes. Credible Intervals vs Freq. Confidence Levels.

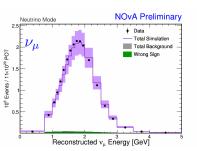
Artur Sztuc FNAL JETP 24 June 2022 2

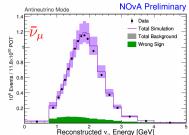
Bayesian vs Frequentist, Marginalization vs Profiling

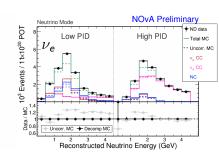
- MCMC uses marginalization rather than profiling.
 - Not necessarily reserved to Bayesian methods!
 - Profiling: Maximize parameters not shown.
 - Marginalization: Integrate over parameters not shown.
- Example: marginalizing/profiling over $\sin^2 \theta_{23}$.
 - Line of best fit to profile over $\sin^2 \theta_{23}$.
 - Box with probabilities to sum over for marginalization.
- Use posterior probability densities, not χ^2 .
 - Bayes. Credible Intervals vs Freq. Confidence Levels.



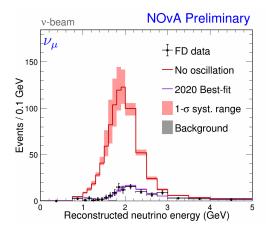
Artur Sztuc FNAL JETP 24 June 2022


Collected data

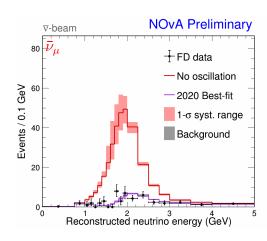

Collected beam data



- \bullet Collected 37 $\times\,10^{20}$ protons-on-target up to date.
- Data up to early 2020 included in the analysis shown here.
 - 13.6×10^{20} in ν -beam mode.
 - 12.5×10^{20} in $\overline{\nu}$ -beam mode.



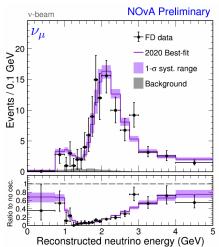
- ν_{μ} and $\bar{\nu}_{\mu}$ ND samples are used to correct the FD unoscillated predictions via extrapolation.
- We can then apply the $P(
 u_{\mu}
 ightarrow
 u_{e})$ curve to the corrected predictions.
- The ν_e samples are used to correct the irreducible ν_e background in the beam at the FD.


Far detector data Muon neutrinos

Observed: 211

• Best Fit Prediction: 222.3

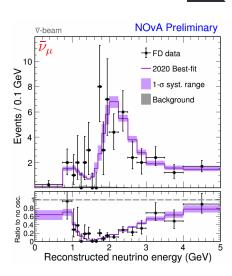
• Background: 8.2



Observed: 105

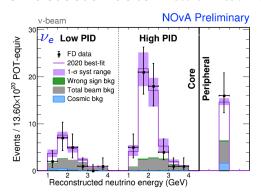
Best Fit Prediction: 105.4

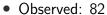
• Background: 2.1


Far detector data Muon neutrinos

• Best Fit Prediction: 222.3

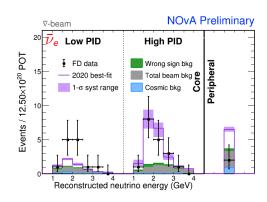
• Background: 8.2




• Observed: 105

• Best Fit Prediction: 105.4

• Background: 2.1


Far detector data Electron neutrinos

Best Fit Prediction: 85.8

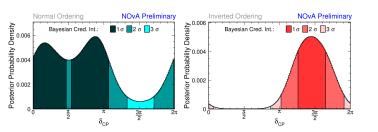
• Background: 26.8

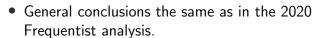
• Observed: 33

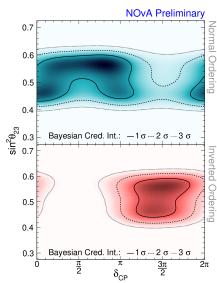
Best Fit Prediction: 33.2

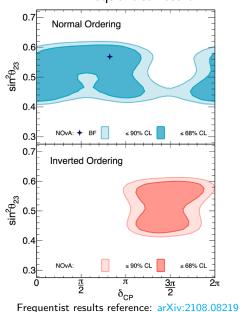
• Background: 14

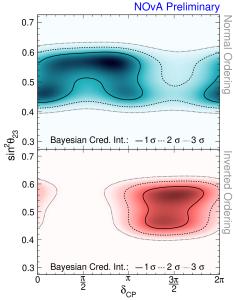
> 4 σ evidence of electron antineutrino appearance

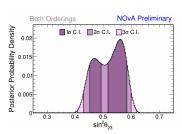

Bayesian Inference into the PMNS model

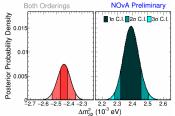

Appearance parameters' results

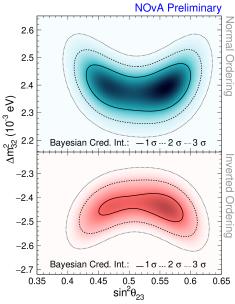



- $\delta_{CP} = 1.5\pi$ outside of 2σ credible intervals (NO).
- $\delta_{CP} = 0.5\pi$ outside of 3σ credible intervals (IO).
- Prefer Upper Octant of θ_{23} .


Artur Sztuc FNAL JETP 24 June 2022


FNAL JETP Artur Sztuc 24 June 2022 32

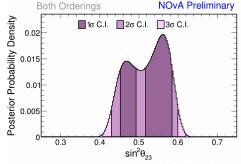

Disappearance parameters' results Both Orderings

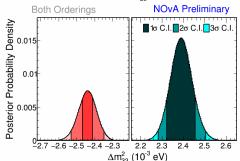


- Prefer upper octant and normal mass ordering.
- Neither preference is significant, below $\sim 1 \sigma$.

	N. Ordering	I. Ordering	
U. Octant	41.7%	20.9%	62.6%
L. Octant	25.8%	11.5%	37.4%
	67.5%	32.5%	

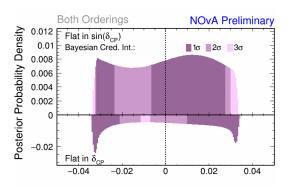
Artur Sztuc FNAL JETP 24 June 2022 33


Bayes Factors


	N. Ordering	I. Ordering	
U. Octant	41.7%	20.9%	62.6%
L. Octant	25.8%	11.5%	37.4%
	67.5%	32.5%	

- Bayes Factors: odds ratio, how much more likely one model is than another.
- NO/IO: 2.1, UO/LO: 1.7
- Both can be interpreted as below $1\,\sigma$ or "not worth more than a bare mention" according to Jeffreys and Raftery & Kass scales.

References: Jeffreys ISBN:9780191589676, Raftery & Kass doi:10.2307/2291091



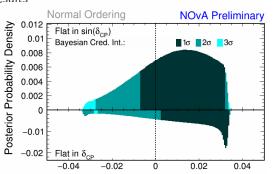
Artur Sztuc FNAL JETP 24 June 2022 34

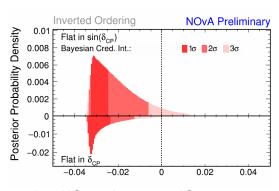
What? Why? Priors?

- Jarlskog-Invariant: measure of CP-violation independent of parametrization.
- Also used in the Quark sector

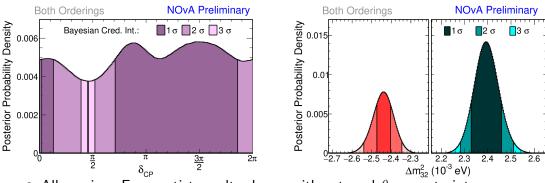
- J=0: CP-Conservation. J≠0: CP-Violation
- A prior flat in $sin(\delta_{CP})$ provides data-only preference (upper half).
- A prior flat in $\delta_{\rm CP}$ has a bias away from minimal CPV (lower half).
 - There's some theoretical motivation (Neutrino Mixing Anarchy) for this.

Reference: Neutrino Mixing Anarchy arXiv:1204.1249


Jarlskog-Invariant



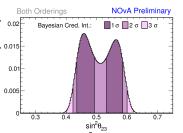
Results

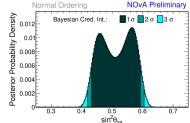

- CP-Conservation (J=0) within 1σ interval in NO, within 3σ in IO.
 - Disfavoured more with a prior uniform in δ_{CP} .
- Bayes factor for $J\neq 0$ using Savage-Dickey method: 1.5 for **both priors**.
 - \bullet Less than $1\,\sigma$ significance, or "not worth more than a bare mention".
- Slight, but not significant preference for CP-violation.

Reference: Savage-Dickey arXiv:2004.09899

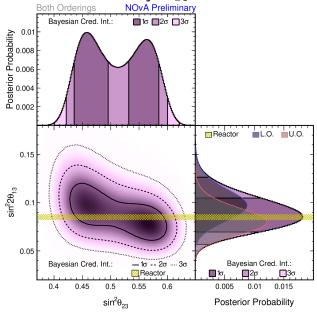
(No) Reactor constraint on θ_{13}

Artur Sztuc FNAL JETP 24 June 2022


- All previous Frequentist results shown with external θ_{13} constraint.
- But NOvA has sensitivity to θ_{13} ! How does it affect our results?
 - Do we agree with the Reactors? Tensions in the PMNS model?
- Allowing unconstrained θ_{13} to give NOvA-only preferences:
 - δ_{CP} preferences don't change much.
 - Prefer normal mass ordering.
 - General conclusions similar to Reactor-constrained θ_{13} .

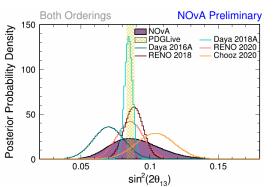

Artur Sztuc FNAL JETP 24 June 2022

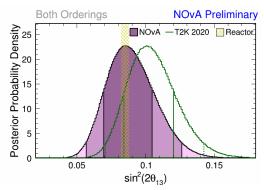
Results without Reactor Constraint Both Orderings


Lower octant: $\sin^2\theta_{23} < 0.5$, Upper Octant: $\sin^2\theta_{23} > 0.5$

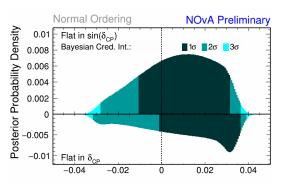
- \bullet Prefer Lower Octant overall with NOvA-only $\theta_{\rm 13}$
- Slight preference for Upper Octant in Normal Ordering.
- Higher preference for Lower Octant in Inverted Ordering.
- We need to look at θ_{13} to understand this.

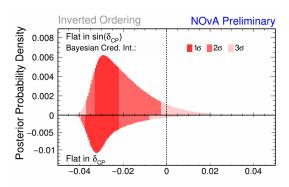
 Artur Sztuc
 FNAL JETP
 24 June 2022
 3


- $\bullet \ \sin^2(2 heta_{13}) = 0.085^{+0.020}_{-0.016}$
- NOvA in a good agreement with the reactor experiments.
- θ_{13} strongly linked with θ_{23} .
- Each θ_{23} octant and mass ordering prefers slightly different central value.
- Reactor's θ_{13} value, when used, causes higher preference for upper octant.

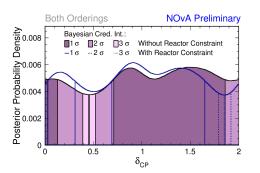

NOvA-only θ_{13}

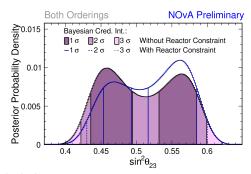
- NOvA (purple) in agreement with the reactor experiments.
- Also in agreement with T2K.
- No tensions between short-distance $P(\bar{\nu}_e \to \bar{\nu}_e)$ and long-distance $P(\nu_\mu \to \nu_e)$ & $P(\bar{\nu}_\mu \to \bar{\nu}_e)$.
- Gives the PMNS model extra credibility.


NOvA-only CP-violation


Both Orderings

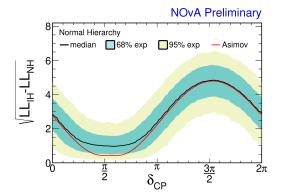
Jarlskog-Invariant


- The shape changes because θ_{13} is allowed to take more values.
- Nevertheless, the general conclusions about CP-conservation are similar.


Reactor constraint comparisons

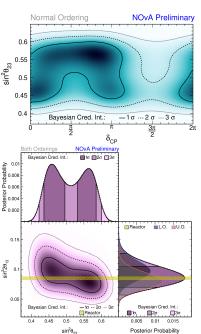
- Setting θ_{13} free does change our results slightly.
- Prefer lower octant with free θ_{13} , upper octant when constrained.
- These differences are low, however.
 - 1σ intervals in both octants.
 - Low Bayes Factors.

 Artur Sztuc
 FNAL JETP
 24 June 2022
 43


Bright Future

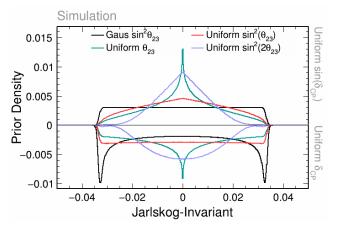
- NOvA Test-Beam to measure detector response.
- MW-capable horn and target already installed.
 - New power record reached last month!
- Expect $> 2 \times$ more in both ν and $\bar{\nu}$ data.
 - Analysed 26e20 POT.
 - 11e20 POT more collected since.
 - Goal by 2027: 67-72e9 POT.

NOvA-T2K effort to produce joint result.

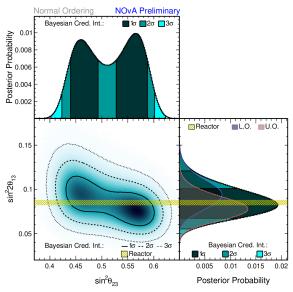


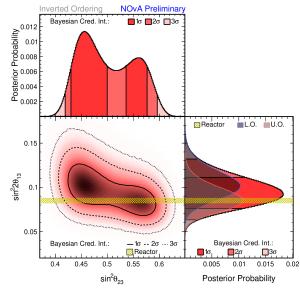
Conclusions

- New techniques provide a different statistical interpretation of NOvA data.
- General agreement with the 2020 Frequentist results.
- First NOvA-only measurement of θ_{13} $\sin^2(2\theta_{13}) = 0.085^{+0.020}_{-0.016}$
- PMNS formalism explains NOvA data very well:
 - No tension between Accelerator and Reactor neutrinos.
 - Jarlskog-Invariant: no high preference for CP-Violation or CP-Conservation.
- Similar results with and without external θ_{13} constraint.
 - Different preference for θ_{23} octant, but not significant.



BACKUPS

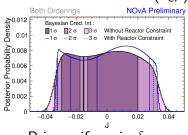

How about priors on other oscillation parameters for J?

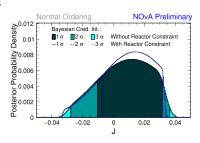

- Changing θ priors to be uniform in θ , $\sin^2 \theta$ changes the prior contribution.
- It does not, however, change the posterior our results.
- Likelihood is stronger than the prior for high-stats data, overwhelming it.
- \bullet This does not happen for δ_{CP} because we don't constrain it well.

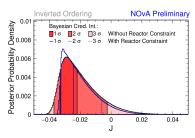
NOvA-only θ_{13} measurements

 Artur Sztuc
 FNAL JETP
 24 June 2022
 49

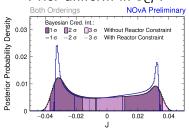
Jarlskog-Invariant

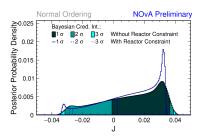


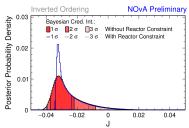



50

θ_{13} constraint comparisons


Prior uniform in $sin(\delta_{CP})$:





Prior uniform in δ_{CP} :

