JAVIER DUARTE FERMILAB W&C JUNE 3, 2022

UCSI ENABLING HIGGS COUPLING MEASUREMENTS WITH BOOSTED HH

LHC+HL-LHC lifespan as the Chicago marathon 10 years since the Higgs discovery!

- LHC+HL-LHC lifespan as the Chicago marathon
- 10 years since the Higgs discovery!
 - Learned a great deal that is so far consistent with the standard model

- LHC+HL-LHC lifespan as the Chicago marathon
- 10 years since the Higgs discovery!
 - Learned a great deal that is so far consistent with the standard model
- But mile 10 is not mile 26.2!

LHC+HL-LHC lifespan as the Chicago marathon

- 10 years since the Higgs discovery!
 - Learned a great deal that is so far consistent with the standard model

But mile 10 is not mile 26.2!
Plenty of time for twists & turns

- LHC+HL-LHC lifespan as the Chicago marathon
- 10 years since the Higgs discovery!
 - Learned a great deal that is so far consistent with the standard model
- But mile 10 is not mile 26.2!
 - Plenty of time for twists & turns
 - Measuring Higgs self interaction necessary for establishing connection between the Higgs boson and *electroweak symmetry breaking*

LEFT-HANDED PARTICLES

interactions.

- the matter-antimatter asymmetry...
- Higgs boson is the *centerpiece*: all particles interact with it

But there has to be more to it! SM does not explain dark matter, neutrino masses, and

- the matter-antimatter asymmetry...
- Higgs boson is the *centerpiece*: all particles interact with it

But there has to be more to it! SM does not explain dark matter, neutrino masses, and

Measuring its couplings to other particles (and to *itself*) may give insight into BSM physics

 $V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$

The shape of the quartic Higgs potential determined by the self-coupling λ

$$V(\phi) = \frac{1}{2}\mu^2 \phi^2 + \frac{1}{4}\lambda \phi^4$$

The shape of the quartic Higgs potential determined by the self-coupling λ

$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

- Sombero shape means the Higgs field prefers a nonzero value (smaller energy)
 - W, Z bosons acquire mass; while *𝔅* remains massless → symmetry of electroweak force is broken

The shape of the quartic Higgs potential determined by the self-coupling λ

$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$

- Sombero shape means the Higgs field prefers a nonzero value (smaller energy)
 - W, Z bosons acquire mass; while *y* remains massless → symmetry of electroweak force is broken
- Measurement of \u03c4 crucial for confirming this story of how electroweak symmetry breaking is realized
 - And the (meta)stability of our vacuum

 $\mathscr{L} \supset -\frac{m_t}{v} \overline{t} t H + \frac{m_H^2}{2v} H^3 + \frac{m_H^2}{8v^2} H^4$ $+\delta_{V} \frac{2m_{\nu}^{2}}{\nu} V_{\mu}V^{\mu}H + \delta_{V} \frac{m_{V}^{2}}{\nu^{2}} V_{\mu}V^{\mu}H^{2} + \cdots$

In the SM, relevant part of the Lagrangian is

Many BSM scenarios conceivable for interpreting results

where $V = W^{\pm}$ or Z and $\delta_W = 1$, $\delta_Z = 1/2$

Many BSM scenarios conceivable for interpreting results

Focus on modified couplings w.r.t. the SM: κ_{λ} , κ_{V} , κ_{2V} , and κ_{t}

• Dominant gluon-gluon fusion (ggF) production mode ($\sigma_{ggF} = 31.05$ fb) gives best access to H self-coupling

• Dominant gluon-gluon fusion (ggF) production mode ($\sigma_{ggF} = 31.05$ fb) gives best access to H self-coupling

• Dominant gluon-gluon fusion (ggF) production mode ($\sigma_{ggF} = 31.05$ fb) gives best access to H self-coupling

• Vector boson fusion (VBF) ($\sigma_{VBF} = 1.73$ fb) uniquely sensitive to HHVV coupling

• Dominant gluon-gluon fusion (ggF) production mode ($\sigma_{ggF} = 31.05$ fb) gives best access to H self-coupling

• Vector boson fusion (VBF) ($\sigma_{VBF} = 1.73$ fb) uniquely sensitive to HHVV coupling

κ

HH EVENT KINEMATICS

HH EVENT KINEMATICS

- Spectrum of m_{HH} depends on κ_λ
 - Softer for large $|\kappa_{\lambda}|$
 - Intermediate |κ_λ| leads to harder m_{HH}
 spectrum and boosted ggF
 signatures, but overall cross section
 reduction due to interference

HH EVENT KINEMATICS

- Spectrum of m_{HH} depends on κ_λ
 - Softer for large $|\kappa_{\lambda}|$
 - Intermediate |κ_λ| leads to harder m_{HH}
 spectrum and boosted ggF
 signatures, but overall cross section
 reduction due to interference
- Alternatively, smaller κ_{2V} leads to larger cross section, harder m_{HH} spectrum, and boosted VBF signatures

bbyy has small rate but is traditionally thought to be "golden channel"

- bbyy has small rate but is traditionally thought to be "golden channel"
- bbbb is the largest fraction, but more challenging due to large backgrounds

- bbyy has small rate but is traditionally thought to be "golden channel"
- bbbb is the largest fraction, but more challenging due to large backgrounds
 - This talk: using new tools & phase space to make bbbb channel among the most sensitive

HOW CMS SEES QUARKS AND GLUONS

Quarks and gluons interact via the strong force and are never seen in isolation → become jets of hadrons (bound states)

HOW CMS SEES QUARKS AND GLUONS

Quarks and gluons interact via the strong force and are never seen in isolation → become jets of hadrons (bound states)

HOW CMS SEES QUARKS AND GLUONS

Quarks and gluons interact via the strong force and are never seen in isolation → become jets of hadrons (bound states)

Cluster the tracks and energy into a cone-shaped jet

CMS Experiment at the LHC, CERN

Signal:

Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259

CMS Experiment at the LHC, CERN

Signal:

Η

Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259

CMS Experiment at the LHC, CERN

Signal:

Η

Data recorded: 2016-Aug-13 16:51:13.749568 GMT Run / Event / LS: 278803 / 465417690 / 259

Can artificial intelligence help us?

LOW MOMENTUM (RESOLVED)

- At low momentum, the bottom quarks are resolved into separate small-radius jets
 - Anti-k_T algorithm with R=0.4 (AK4) jets
- Large QCD and combinatorial background

BOOSTING THE HIGGS

BOOSTING THE HIGGS

- At high momentum, the bottom quarks are **boosted** into large-radius jets
 - Anti-k_T algorithm with R=0.8 (AK8) jets

BOOSTING THE HIGGS

- At high momentum, the bottom quarks are **boosted** into large-radius jets
 - Anti-k_T algorithm with R=0.8 (AK8) jets

arXiv:2007.13681 arXiv:2012.01249 14

data has led to groundbreaking performance

arXiv:2007.13681 arXiv:2012.01249 14

- data has led to groundbreaking performance
 - CNNs for images

arXiv:2007.13681 arXiv:2012.01249 14

- data has led to groundbreaking performance
 - CNNs for images

arXiv:2007.13681 arXiv:2012.01249 14

- data has led to groundbreaking performance
 - CNNs for images

What about high energy physics data like jets?

arXiv:2007.13681 arXiv:2012.01249 14

- data has led to groundbreaking performance
 - CNNs for images

What about high energy physics data like jets?

- Distributed
 - unevenly in space
- Sparse
- Variable size
- No defined order
- Interconnections
 - → Graphs

Node features v_i: particle 4-momentum

Node features v_i: particle 4-momentum

Edge features e_k : pseudoangular distance betwern particles

Node features v_i: particle 4-momentum

Edge features e_k : pseudoangular distance between particles

Griph (globa) features u: jet mass

GNN'S MAIN INGREDIENT: MESSAGE PASSING

GNN'S MAIN INGREDIENT: MESSAGE PASSING

For all neighbors *j* of node *i* compute a "message" via a NN: $\phi(x_i, x_j)$

GNN'S MAIN INGREDIENT: MESSAGE PASSING

- For all neighbors *j* of node *i* compute a "message" via a NN: $\phi(x_i, x_j)$
- Update the node features by summing all messages: $h_i = \sum \phi(x_i, x_j)$

"message passing"

- Node-level tasks
 - Identify "pileup" particles

Node-level tasks

- Identify "pileup" particles

- Node-level tasks
- - Identify "pileup" particles

b hadrons have long lifetimes: travel O(mm) before decay!

b hadrons have long lifetimes: travel O(mm) before decay!

b hadrons have long lifetimes: travel O(mm) before decay!

Handles:

secondary vertices

b hadrons have long lifetimes: travel O(mm) before decay!

- secondary vertices
- displaced tracks

b hadrons have long lifetimes: travel O(mm) before decay!

- secondary vertices
- displaced tracks
- large impact parameters

b hadrons have long lifetimes: travel O(mm) before decay!

- secondary vertices
- displaced tracks
- large impact parameters
- soft leptons

b hadrons have long lifetimes: travel O(mm) before decay!

Handles:

- secondary vertices
- displaced tracks
- Iarge impact parameters
- soft leptons

Relative positions of SVs

Particles and vertices are two feature vectors (heterogenous graph)

- Particles and vertices are two feature vectors (heterogenous graph)
- GNNs typically consider a homogenous graph

- Particles and vertices are two feature vectors (heterogenous graph)
- GNNs typically consider a homogenous graph
- After embedding feature vectors in a common latent space (via a NN), combined graph can be constructed

separate inputs with different $p_i = [p_T^{rel}, \phi^{rel}, \eta^{rel}, \dots, d_{3D}, \operatorname{cov}(p_T, p_T), \dots]$

 $v_i = [p_T^{\text{rel}}, \phi^{\text{rel}}, \eta^{\text{rel}}, \dots, n_{\text{tracks}}, \cos \theta_{\text{PV}}, \dots]$

PARTICLENET: GNN FOR TAGGING H(BB) IN CMS

"closeness" in the latent space

arXiv:1902.08570 CMS-DP-2020-002 20

"closeness" in the latent space

arXiv:1902.08570 <u>CMS-DP-2020-002</u> 20

- "closeness" in the latent space

arXiv:1902.08570 <u>CMS-DP-2020-002</u> 20

- "closeness" in the latent space

arXiv:1902.08570 CMS-DP-2020-002 20

CMS: $z_{cut} = 0.1, \beta = 0$

CMS: $z_{cut} = 0.1, \beta = 0$

<u>CMS-DP-2021-017</u> 22

Repurpose ParticleNet architecture with a target of the "true" jet mass

- Repurpose ParticleNet architecture with a target of the "true" jet mass
- $m_{\text{target}} = \begin{cases} m_{\text{SD}}^{\text{gen}} & \text{if jet is QCD} \\ m_{\text{X}} & \text{otherwise} \end{cases}$

Training samples incorporate $X \rightarrow bb$, $X \rightarrow cc$, $X \rightarrow qq$ varying $m_X \in [15, 250]$ GeV

- Repurpose ParticleNet architecture with a target of the "true" jet mass

 $m_{\text{target}} = \begin{cases} m_{\text{SD}}^{\text{gen}} & \text{if jet is QCD} \\ m_{\text{X}} & \text{otherwise} \end{cases}$

Minimize difference between output m_{reg} and target m_{target}

Training samples incorporate $X \rightarrow bb$, $X \rightarrow cc$, $X \rightarrow qq$ varying $m_X \in [15, 250]$ GeV

- Repurpose ParticleNet architecture with a target of the "true" jet mass

 $m_{\text{target}} = \begin{cases} m_{\text{SD}}^{\text{gen}} & \text{if jet is QCD} \\ m_{\text{X}} & \text{otherwise} \end{cases}$

- Minimize difference between output m_{reg} and target m_{target}
- Substantial scale and resolution improvement

▶ Training samples incorporate $X \rightarrow bb$, $X \rightarrow cc$, $X \rightarrow qq$ varying $m_X \in [15, 250]$ GeV

- Repurpose ParticleNet architecture with a target of the "true" jet mass

 $m_{\text{target}} = \begin{cases} m_{\text{SD}}^{\text{gen}} & \text{if jet is QCD} \\ m_{\text{X}} & \text{otherwise} \end{cases}$

- Minimize difference between output m_{reg} and target m_{target}
- Substantial scale and resolution improvement
- No significant mass sculpting near m_H = 125 GeV for QCD background

Apply kinematic selections for ggF or VBF

- Apply kinematic selections for ggF or VBF
- ► Identify high-p_T Higgs candidate jets with
 - ParticleNet $H \rightarrow bb$ tagger D_{bb}
 - ParticleNet regressed jet mass m_{reg}

- Apply kinematic selections for ggF or VBF
- Identify high-p_T Higgs candidate jets with
 - ParticleNet $H \rightarrow bb$ tagger D_{bb}
 - ParticleNet regressed jet mass m_{reg}
- **Categorize events using m_{HH}, ...**

- Apply kinematic selections for ggF or VBF
- Identify high-p_T Higgs candidate jets with
 - ► ParticleNet $H \rightarrow bb$ tagger D_{bb}
 - ParticleNet regressed jet mass m_{req}
- Categorize events using m_{HH}, ...
- Given independence of D_{bb} and m_{req}, apply data-driven estimate

- Apply kinematic selections for ggF or VBF
- Identify high-p_T Higgs candidate jets with
 - ► ParticleNet $H \rightarrow bb$ tagger D_{bb}
 - ParticleNet regressed jet mass m_{req}
- Categorize events using m_{HH}, ...
- Given independence of D_{bb} and m_{req}, apply data-driven estimate

ULD

Main backgrounds:

VBF: KINEMATIC SELECTON

VBF: KINEMATIC SELECTON

CMS Experiment at the LHC, CERN Data recorded: 2017-Aug-07 19:13:22.727552 GMT Run / Event / LS: 300633 / 525384863 / 347

VBF: EVENT CATEGORIZATION

VBF: EVENT CATEGORIZATION

- Three D_{bb} working points (WPs)
 - **Tight** WP: $\varepsilon_S \sim 60\%$, $\varepsilon_B \sim 0.3\%$
 - Medium WP: $\varepsilon_S \sim 80\%$, $\varepsilon_B \sim 1\%$
 - **Loose** WP: ε_S~90%, ε_B~2%

VBF: EVENT CATEGORIZATION

- Three D_{bb} working points (WPs)
 - **Tight** WP: $\varepsilon_S \sim 60\%$, $\varepsilon_B \sim 0.3\%$
 - Medium WP: $\varepsilon_S \sim 80\%$, $\varepsilon_B \sim 1\%$
 - **Loose** WP: ε_S~90%, ε_B~2%
- Three exclusive regions based on WPs:
 - High Purity (HP): Both Higgs candidate jets pass tight WP
 - Medium Purity (MP): Both pass medium WP, but not tight WP
 - Low Purity (LP): Both pass loose
 WP, but not medium WP

sidebands and in search region

- Key observation: D_{bb} score for QCD similar in sidebands and in search region
- ABCD method to estimate QCD background in search region D
- OCD-enriched control region C with low D_{bb} score (0.1–0.9) for both AK8 jets

 $m_{req,1} \in [50, 200] \text{ GeV}$ $^{+}m_{req,1} \in [110, 150] \text{ GeV}$ $m_{req,2} \in [50, 90] \cup [145, 200] \text{ GeV}$ $m_{req,2} \in [90, 145] \text{ GeV}$

- Key observation: D_{bb} score for QCD similar in sidebands and in search region
- ABCD method to estimate QCD background in search region D
- OCD-enriched control region C with low D_{bb} score (0.1–0.9) for both AK8 jets
- Transfer factor (N_B/N_A) obtained in p_Tsubleading AK8 jet mass sidebands

 $m_{req,1} \in [50, 200] \text{ GeV}$ $^{+}m_{reg,1} \in [110, 150] \text{ GeV}$ $m_{req,2} \in [90, 145] \text{ GeV}$ $m_{req,2} \in [50, 90] \cup [145, 200] \text{ GeV}$

Low D_{bb} score

High D_{bb} score

- Key observation: D_{bb} score for QCD similar in sidebands and in search region
- ABCD method to estimate QCD background in search region D
- OCD-enriched control region C with low D_{bb} score (0.1–0.9) for both AK8 jets
- Transfer factor (N_B/N_A) obtained in p_Tsubleading AK8 jet mass sidebands
- For the test of test of

 $m_{req,1} \in [50, 200] \text{ GeV}$ $m_{req,2} \in [50, 90] \cup [145, 200] \text{ GeV}$

VBF: FIT RESULTS

- Three categories (LP, MP, HP) based on the D_{bb} discriminant of the H candidates
 - Categorize further in m_{HH}
- Data-driven QCD estimate
- Prediction agrees with observed data
 - Compare to expected contribution for $\kappa_{2V} = 0$ (other couplings at SM values)

CMS-B2G-22-003 29

_

<u>CMS-B2G-22-003</u> 30

• Strongest constraints on κ_{2V} to date: 0.62 < κ_{2V} < 1.41 at 95% CL (all other couplings are SM)

- (all other couplings are SM)

<u>CMS-B2G-22-003</u> 30

- (all other couplings are SM)

<u>CMS-B2G-22-003</u> 30

- (all other couplings are SM)
- with single-Higgs constraints on KV

CMS-B2G-22-003 30

GGF: KINEMATIC SELECTON

- Fixed by D_{bb} score Two AK8 jets with $p_T > 300$ GeV, sorted by D_{bb} score
 - Jet 1 $m_{SD} > 50$ GeV, jet 2 $m_{reg} > 50$ GeV
- Veto events passing VBF selection

GGF: BOOSTED DECISION TREE FOR EVENT CATEGORIZATION

- A boosted decision tree is trained to select events using 17 input variables, including m_{HH}, p_{T,j1}/m_{HH}, jet 1 m_{SD}, jet 1 D_{bb}, ...
- BDT has $2\times$ better bkgd. rejection than cut-based: $\epsilon_B \sim 0.05\%$ for $\epsilon_S \sim 15\%$

GGF: EVENT CATEGORIZATION

- D_{bb} score
- OCD control region defined based on events that fail the D_{bb} selection

Score qq ubleading

Three signal region categories defined based on BDT score and subleading

GGF: PREDICTING THE QCD BACKGROUND

After accounting for other SM backgrounds, Derive the shape of the QCD background using the jets that fail the D_{bb} selection

Transfer shape

GGF: PREDICTING THE QCD BACKGROUND

background using the jets that fail the D_{bb} selection

After accounting for other SM backgrounds, Derive the shape of the QCD

GGF: PREDICTING THE QCD BACKGROUND

background using the jets that fail the D_{bb} selection

After accounting for other SM backgrounds, Derive the shape of the QCD

GGF: SIGNAL REGIONS

Three ggF signal categories and VBF category are fit simultaneously to extract the HH signal strength $\mu = 3.5^{+3.3}_{-2.5}$ (~1.4 σ excess over SM!)

CMS-B2G-22-003 35

GGF: SIGNAL REGIONS

Three ggF signal categories and VBF category are fit simultaneously to extract the HH signal strength $\mu = 3.5^{+3.3}_{-2.5}$ (~1.4 σ excess over SM!)

CMS-B2G-22-003 35

GGF: SIGNAL REGIONS

Three ggF signal categories and VBF category are fit simultaneously to extract the HH signal strength $\mu = 3.5^{+3.3}_{-2.5}$ (~1.4 σ excess over SM!)

Most sensitive category for SM HH

Observed (expected) 95% CL UL on HH: 9.9 (5.1) × SM!

CMS-B2G-22-003 35

VBF & GGF COMPLEMTARITY

While ggF categories dominate fo dominates for BSM VBF signal

While ggF categories dominate for inclusive SM HH signal, VBF category

COMBINED RESULTS

<u>CMS-B2G-22-003</u> 37

COMBINED RESULTS

Based on combined fit, κ_{λ} constrained to be in [-9.9, 16.9] at 95% CL

COMBINED RESULTS

Based on combined fit, κ_{λ} constrained to be in [-9.9, 16.9] at 95% CL

> 2D likelihood scan (κ_{λ} , κ_{2V}) shows complementarity between two channels

SIGNAL STRENGTH RESULTS IN CONTEXT

Best sensitivity to SM ggF HH production

SIGNAL STRENGTH RESULTS IN CONTEXT

Best sensitivity to SM ggF HH production and BSM VBF HH production

COUPLING RESULTS IN CONTEXT

Best constraint on κ_{2V}

COUPLING RESULTS IN CONTEXT

Best constraint on κ_{2V}

FUTURE HH PROJECTIONS

	Statistical + Systematic	
	ATLAS	CMS
$HH \to b\bar{b}b\bar{b}$	0.61	0.95
$HH \to b \overline{b} \tau \tau$	2.1	1.4
$HH ightarrow b \overline{b} \gamma \gamma$	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	-	0.56
$HH \to b\bar{b}ZZ(4l)$	-	0.37
combined	3.0	2.6
	Combined	
	4.0	

FUTURE HH PROJECTIONS

- Based on 2018 HL-LHC projection, SM HH significance is 4σ for 3000 fb⁻¹
- Boosted bbbb channels can put us over the adgreented discovery"
- Plus many more *improvements* anticipated!

	Statistical + Systematic	
	ATLAS	CMS
$HH \to b\bar{b}b\bar{b}$	0.61	0.95
$HH \to b\bar{b}\tau\tau$	2.1	1.4
$HH ightarrow b \overline{b} \gamma \gamma$	2.0	1.8
$HH \to b\bar{b}VV(ll\nu\nu)$	_	0.56
$HH \to b\bar{b}ZZ(4l)$	-	0.37
combined	3.0	2.6
	Combined	
	4.0	

based); Planned improvements:

Trigger is a limiting factor, both level-1 (FPGA-based) and high-level (software-

- based); Planned improvements:
 - New Run 3 high-level triggers: (1) two boosted AK8 jets with m_{SD} requirements and (2) single boosted AK8 jet with D_{bb} requirements

Trigger is a limiting factor, both level-1 (FPGA-based) and high-level (software-

- based); Planned improvements:
 - New Run 3 high-level triggers: (1) two boosted AK8 jets with m_{SD} requirements and (2) single boosted AK8 jet with D_{bb} requirements
 - Upgraded HL-LHC level-1 trigger with new capabilities, including ML-based jet taggers implemented on FPGAs using hls4ml

Trigger is a limiting factor, both level-1 (FPGA-based) and high-level (software-

- based); Planned improvements:
 - New Run 3 high-level triggers: (1) two boosted AK8 jets with m_{SD}
 - Upgraded HL-LHC level-1 trigger with new capabilities, including ML-based jet taggers implemented on FPGAs using hls4ml

Trigger is a limiting factor, both level-1 (FPGA-based) and high-level (software-

requirements and (2) single boosted AK8 jet with D_{bb} requirements

tacging

 GNNs, NNs that operate on graph-structured data, are state of the art for many HEP tasks including

- GNNs, NNs that operate on graph-structured data, are state of the art for many HEP tasks including H(bb) tagging
- Improving H(bb) tagging allows us to probe the high-p_T regime and measure Higgs couplings

- GNNs, NNs that operate on graph-structured data, are state of the art for many HEP tasks including H(bb) tagging
- Improving H(bb) tagging allows us to probe the high-p_T regime and measure Higgs couplings
- CMS boosted HH search one of the first to use GNNs
 - 95% CL upper limit on HH production observed (expected) to be 9.9 (5.1) \times SM
 - Strongest constraints on κ_{2V}: [0.62, 1.41]
 - $\kappa_{2V}=0$ excluded at 6.3 σ (with other H couplings at SM values)!

- GNNs, NNs that operate on graph-structured data, are state of the art for many HEP tasks including H(bb) tagging
- Improving H(bb) tagging allows us to probe the high-p_T regime and measure Higgs couplings
- CMS boosted HH search one of the first to use GNNs
 - 95% CL upper limit on HH production observed (expected) to be 9.9 (5.1) \times SM
 - Strongest constraints on κ_{2V}: [0.62, 1.41]
 - $\kappa_{2V}=0$ excluded at 6.3 σ (with other H couplings at SM values)!
- Looking toward the HL-LHC, boosted HH searches can put us over the edge of "discovery"

JAVIER DUARTE FERMILAB W&C JUNE 3, 2022

LHC + HL-LHC SCHEDULE

GGF HH INTERPRETATION

VBF HH INTERPRETATION

 $\mathcal{M} = \kappa_V \kappa_\lambda \mathcal{A} + \kappa_V^2 \mathcal{B} + \kappa_{2V} \mathcal{C}$ $\sigma(\kappa_{\lambda},\kappa_{V},\kappa_{2V}) \sim |\mathscr{M}|^{2} = \kappa_{V}^{2}\kappa_{\lambda}^{2}a + \kappa_{V}^{4}b + \kappa_{2V}^{2}c + \kappa_{V}^{3}\kappa_{\lambda}i_{ab} + \kappa_{V}\kappa_{2V}\kappa_{\lambda}i_{ac} + \kappa_{V}^{2}\kappa_{2V}i_{bc}$

• Templates $(\kappa_{2V}, \kappa_V, \kappa_{\lambda}) = (1, 1, 1), (1, 1, 0), (1, 1, 2), (1, 0, 1), (1, 2, 1), (1, 5, 1, 1)$ chosen for continuous morphing

 $D_{\rm VBF}(\kappa_{2V},\kappa_{V},\kappa_{\lambda}) = \mu \ \mu_{\rm VBF} \sum f_{\rm VBF}^{i}(\kappa_{2V},\kappa_{V},\kappa_{\lambda})D_{\rm VBF}^{i}$

COMPACT MUON SOLENOID

Specialized components to measure different particles

Brass + Plastic scintillator ~7,000 channels

100 million channels

SILICON TRACKERS

Pixel (100x150 μ m) ~16m² ~66M channels Microstrips (80x180 μ m) ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID

Niobium titanium coil carrying ~18,000A

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

