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▸ LHC+HL-LHC lifespan as the Chicago marathon
▸ 10 years since the Higgs discovery!
▸ Learned a great deal that is so far  

consistent with the standard model 

▸ But mile 10 is not mile 26.2!
▸ Plenty of time for twists & turns
▸ Measuring Higgs self interaction necessary for 

establishing connection between the Higgs 
boson and electroweak symmetry breaking

We are here!

Higgs discovery!

Higgs  
self-interaction?
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HIGGS BOSON IN THE STANDARD MODEL

▸ But there has to be more to it! SM does not explain dark matter, neutrino masses, and 
the matter-antimatter asymmetry…

▸ Higgs boson is the centerpiece: all particles interact with it
▸ Measuring its couplings to other particles (and to itself) may give insight into BSM physics
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prefers a nonzero value (smaller energy) 
▸ W, Z bosons acquire mass; while ɣ 
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▸ The shape of the quartic Higgs potential 
determined by the self-coupling   λ

▸ Sombero shape means the Higgs field 
prefers a nonzero value (smaller energy) 
▸ W, Z bosons acquire mass; while ɣ 

remains massless → symmetry of 
electroweak force is broken

▸ Measurement of  crucial for confirming 
this story of how electroweak symmetry 
breaking is realized 
▸ And the (meta)stability of our vacuum

λ
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▸ In the SM, relevant part of the Lagrangian is 
 
 
 
 
 
 
where  and V = W± or Z δW = 1, δZ = 1/2

▸ Many BSM scenarios conceivable for interpreting results

▸ Focus on modified couplings w.r.t. the SM: , , , and κλ κV κ2V κt
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▸ Spectrum of mHH depends on κλ 
▸ Softer for large |κλ| 
▸ Intermediate |κλ| leads to harder mHH 

spectrum and boosted ggF 
signatures, but overall cross section 
reduction due to interference 

▸ Alternatively, smaller κ2V leads to larger 
cross section, harder mHH spectrum, and 
boosted VBF signatures
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Fig. 10 Decomposition of the total background into individual processes as a function the di-Higgs invariant mass after all analysis cuts have been
imposed, except for the mhh cut
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Fig. 11 The di-Higgs mhh distribution at 14 TeV (left) and 100 TeV (right) after all analysis cuts showing the results for the signal (SM and
c2V = 0.8) and for the total background

coupling, parametrized as δc2V = c2V − 1, by exploiting the
information contained in the fullmhh differential distribution
(as opposed to using only the total number of events satisfy-
ing all cuts from Table 3). To achieve this, we first bin our
results in mhh and then follow a Bayesian approach [109] to
construct a posterior probability density function. We include
two nuisance parameters, θB and θS , to account for the uncer-
tainty associated with the background and signal event rate,
respectively. The parameter θS encodes the theoretical uncer-
tainties on the di-Higgs cross section and the branching frac-
tion BR(h → bb̄). We conservatively assume a 10% uncer-
tainty uncorrelated in each mhh bin.

Concerning θB , we expect that an actual experimental
analysis of di-Higgs production via VBF would estimate the
overall normalization of the different background compo-
nents by means of data-driven techniques. We assume a 15%
uncertainty arising from the measurement and subsequent
extrapolation of the dominant QCD multijet background; see
for example a recent ATLAS measurement of dijet bb̄ cross
sections [110]. The background nuisance parameter, θB , is
conservatively also assumed to be uncorrelated among mhh
bins. In addition, while we already rescale the background
cross sections to match existing NLO and NNLO results
(see Appendix A), there still remains a sizeable uncertainty
in their overall normalization from missing higher orders, in

particular for the QCD multijet components. For this reason,
below, we explore the robustness of our results upon an over-
all rescaling of all the background cross sections by a fixed
factor.

The posterior probability function constructed in this way
reads

P(δc2V |{Ni
obs}) =

∫ ∏

i∈{bins}
dθ iS dθ iB L

(
Ni (θ iB, θ

i
S)|Ni

obs
)

× e−(θ iS)
2/2 e−(θ iB )

2/2 π(c2V ), (18)

with Ni (θ iB, θ
i
S) and Ni

obs denoting, respectively, the number
of predicted (for a generic value of c2V ) and observed (assum-
ing SM couplings) events for a given integrated luminosity
L in the i th bin of the di-Higgs invariant mass distribution
mhh , given by2:

Ni (θB, θS) =
[
σ i

sig(c2V )
(
1+θ iS δS

)
+σ i

bkg
(
1+θ iB δB

)]
× L ,

Ni
obs =

[
σ i

sig(c2V = 1)+ σ i
bkg

]
× L . (19)

In Eq. (19), σ i
sig(c2V ) and σ i

bkg indicate the signal (for a given
value of c2V ) and total background cross sections, respec-
tively, for the i-th bin of the mhh distribution. The functional

2 In our analysis, we use 15 bins starting at 250 GeV up to 6(30)TeV
for the LHC(FCC) that are uniformly spaced on a log scale. In addition,
we define an overflow bin up to the relevant centre-of-mass energy.

123

κ2V = 0.8
(κ2V = 1)

EPJC 77, 481 (2017)

http://doi.org/%2010.1140/epjc/s10052-017-5037-9
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▸ bbɣɣ has small rate but is traditionally 
thought to be “golden channel”

▸ bbbb is the largest fraction, but more 
challenging due to large backgrounds

▸ This talk: using new tools & phase 
space to make bbbb channel among 
the most sensitive

HOW DO WE DETECT HH PRODUCTION?

Misc.
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bbZZ
3%bbWW

25%

bbbb
34%
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HOW CMS SEES QUARKS AND GLUONS
▸ Quarks and gluons interact via the strong force and are never seen in isolation  

                                 → become jets of hadrons (bound states)

▸ Cluster the tracks 
and energy into a 
cone-shaped jet 

η
ϕ

pT

9
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Signal:

?

?
Can artificial intelligence help us?

Background:

g



 
I. HH PRODUCTION AT THE LHC 
II. GNNS FOR JET PHYSICS 
III. BOOSTED HH SEARCH 
IV. OUTLOOK
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LOW MOMENTUM (RESOLVED)

b

b

H

▸ At low momentum, the bottom quarks are  
resolved into separate small-radius jets 

▸ Anti-kT algorithm with R=0.4 (AK4) jets 

▸ Large QCD and combinatorial background
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▸ At high momentum, the bottom quarks 
are boosted into large-radius jets

▸ Anti-kT algorithm with R=0.8 (AK8) jets
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▸ At high momentum, the bottom quarks 
are boosted into large-radius jets

▸ Anti-kT algorithm with R=0.8 (AK8) jets

b

b

ΔR ~ 2mH/pT

▸ Identify high-pT Higgs 
candidate jet identified 
with deep learning

BOOSTING THE HIGGS 13

H

H

b

b
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▸ In deep learning, tailoring algorithms to the structure (and symmetries) of the 
data has led to groundbreaking performance
▸ CNNs for images

▸ RNNs for language processing

▸ What about high energy physics data like jets?

▸ Distributed 
unevenly in space 

▸ Sparse 
▸ Variable size 
▸ No defined order 
▸ Interconnections 
→ Graphs

arXiv:2007.13681 
arXiv:2012.01249

https://miro.medium.com/max/700/1*n-IgHZM5baBUjq0T7RYDBw.gif
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NODE, EDGE, GRAPH FEATURES IN HEP (E.G. JET) 15

p = [E, px, py, pz] ≡ [pT, η, ϕ, m]

ΔR = Δη2 + Δϕ2

m = ∑
i∈jet

E2
i − p2

x,i − p2
y,i − p2

z,i

▸ Node features : particle 4-momentum 
 
 

vi

▸ Edge features : pseudoangular distance 
between particles 
 
 
 

ek

▸ Graph (global) features : jet massu
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“message passing”
ϕ(xi, xj)

▸ For all neighbors  of node  compute a “message” via a NN: j i ϕ(xi, xj)

▸ Update the node features by summing all messages: 
 hi = ∑

j

ϕ(xi, xj)
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▸ Node-level tasks 
▸ Identify "pileup" particles

▸ Graph-level tasks 
▸ Jet tagging

▸ Edge-level tasks 
▸ Identify good track doublets

ϕ(xi, xj)

https://youtu.be/uF53xsT7mjc
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b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

▸ Handles: 
▸ secondary vertices
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displaced 
tracks

H(bb) jet

IP1

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

▸ Handles: 
▸ secondary vertices
▸ displaced tracks 
▸ large impact parameters
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charged  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tracks

H(bb) jet

IP1

▸ Relative positions of SVs

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

▸ Handles: 
▸ secondary vertices
▸ displaced tracks 
▸ large impact parameters
▸ soft leptons
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8

Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.
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Figure 10: Jet mass response for signal W jets for various grooming algorithms: trimming (top),
pruning (middle), soft drop (bottom).
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2

> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –
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Figure 10: Jet mass response for signal W jets for various grooming algorithms: trimming (top),
pruning (middle), soft drop (bottom).
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▸ An important property used to analyze Higgs boson jets is the soft drop mass
▸ Grooming removes soft/wide-angle radiation and improves mass resolution
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-
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the analytic behavior of three of the most commonly used jet tagging/grooming methods—
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derstood with the help of logarithmic resummation. Armed with this analytic understanding
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ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless
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where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering
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Figure 10: Jet mass response for signal W jets for various grooming algorithms: trimming (top),
pruning (middle), soft drop (bottom).

of ±3s around the fitted mean. The W mass resolution is improved in all cases for PF+CHS as

SD, β = 0

SD, β = 1

SD, β = 2

Ungroomed

▸ An important property used to analyze Higgs boson jets is the soft drop mass
▸ Grooming removes soft/wide-angle radiation and improves mass resolution
▸ However, grooming can over-prune or under-prune
▸ Can we do better with ML?
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon jets

[44, 47–51], and mitigate the e↵ects of jet contamination [6, 52–61]. Many of these techniques

have found successful applications in jet studies at the Large Hadron Collider (LHC) [50, 62–

89], and jet substructure is likely to become even more relevant with the anticipated increase

in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [90–95] as well as more so-

phisticated substructure techniques [44, 59, 60, 96–103]. Recently, Refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods—

trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed jet mass

distributions, this study showed how their qualitative and quantitative features could be un-

derstood with the help of logarithmic resummation. Armed with this analytic understanding

of jet substructure, the authors of Ref. [59] developed the modified mass drop tagger (mMDT)

which exhibits some surprising features in the resulting groomed jet mass distribution, in-

cluding the absence of Sudakov double logarithms, the absence of non-global logarithms [104],

and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2

> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).

– 2 –

Jet grooming

14Jet Substructure “Planning for the future” Event at the Fermilab LPC - Nov 30, 2016J. Dolen
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✤ In CMS boosted-jet analyses, the soft drop 
algorithm [arXiv:1402.2657] is commonly used to 
"prune" the jet, i.e. to remove soft, wide-
angle radiation (ISR, underlying event, pileup...) 

✤ angular exponent β = 0 

✤ soft cutoff threshold zcut < 0.1 

✤ radius R0 = 0.8 
"Over-pruning" "Under-pruning"

✤ Improves mass resolution and  
signal-vs-background discrimination, but 
can occasionally over/under-pruned mass 

✤ A new technique to improve upon the soft 
drop performance will be presented 
towards the end of the talk
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Figure 1: Performance of the ParticleNet regression (green - solid) and the soft drop algorithm (red - dashed). The mass response is

shown for large-R (R=0.8) Higgs boson jets with pT > 400 GeV and 100 < Mtarget < 150 GeV for various jet compositions: H→ bb

(left), H→ cc (center) and H→ qq (right). The last bin contains the overflow contribution. The resolution degrades for the heavier

quark flavours due to the larger presence of neutrinos. For all the jet compositions, the mass regression shows a substantial

improvement in the mass resolution and in the absolute scale. In addition, tails are strongly mitigated with the mass regression, in

particular at M≈0, where the soft drop algorithm incorrectly identifies the large R jet as single-prong.
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QCD mass Sculpting (AK8)

Figure 5: QCD mass spectrum obtained with the regression algorithm for large-R (R=0.8) QCD jets with pT > 400 GeV. The mass
spectrum is shown for various purities of the Hàbb ParticleNet tagger (left) and Hàcc tagger (right) corresponding to background
efficiencies of 5%, 1% and 0.5%. Limited mass sculpting is observed in the QCD mass spectrum for tighter tagger selections.
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Boosted VBF HH➝4b: Strategy B2G-21-001
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pT>500 GeV
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A pair of AK4 jets
mjj > 500 GeV 

Δη > 4

✤ Tight kinematic selections mean that we need maximal H identification efficiency 

▸ Two AK8 jets and two AK4 jets with  GeV and | | > 4 
▸ Tight kinematic selection means we need maximal H identification efficiency

mjj > 500 Δηjj
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▸ Medium WP: εS~80%, εB~1% 
▸ Loose WP: εS~90%, εB~2% 

▸ Three exclusive regions based on WPs: 
▸ High Purity (HP): Both Higgs 

candidate jets pass tight WP 
▸ Medium Purity (MP): Both pass 

medium WP, but not tight WP 
▸ Low Purity (LP): Both pass loose 

WP, but not medium WP
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▸ TF applied to predict from C to D
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▸ Three categories (LP, MP, HP) 
based on the Dbb discriminant of 
the H candidates  
▸ Categorize further in mHH 

▸ Data-driven QCD estimate 
▸ Prediction agrees with observed 

data 
▸ Compare to expected 

contribution for κ2V = 0 (other 
couplings at SM values)
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▸ Interplay between κV and κ2V
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GGF: KINEMATIC SELECTON
▸ Two AK8 jets with  GeV, sorted by Dbb score 
▸ Jet 1  GeV, jet 2  GeV 

▸ Veto events passing VBF selection

pT > 300
mSD > 50 mreg > 50
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GGF: BOOSTED DECISION TREE FOR EVENT CATEGORIZATION
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▸ A boosted decision tree is trained to select events using 17 input variables, 
including mHH, pT,j1/mHH, jet 1 mSD, jet 1 Dbb, … 

▸ BDT has 2⨉ better bkgd. rejection than cut-based: εB~0.05% for εS~15%
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GGF: EVENT CATEGORIZATION
▸ Three signal region categories defined based on BDT score and subleading 

Dbb score 
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GGF: PREDICTING THE QCD BACKGROUND
▸ After accounting for other SM backgrounds, Derive the shape of the QCD 

background using the jets that fail the Dbb selection
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GGF: SIGNAL REGIONS 35
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▸ Three ggF signal categories and VBF category are fit simultaneously to 
extract the HH signal strength     (~1.4σ excess over SM!)μ = 3.5+3.3
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▸ Three ggF signal categories and VBF category are fit simultaneously to 
extract the HH signal strength     (~1.4σ excess over SM!)μ = 3.5+3.3
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VBF & GGF COMPLEMTARITY
▸ While ggF categories dominate for inclusive SM HH signal, VBF category 

dominates for BSM VBF signal
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COMBINED RESULTS
▸ Based on combined fit, κλ constrained to be in [-9.9, 16.9] at 95% CL 
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COMBINED RESULTS
▸ Based on combined fit, κλ constrained to be in [-9.9, 16.9] at 95% CL 
▸ 2D likelihood scan (κλ , κ2V) shows complementarity between two channels
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SIGNAL STRENGTH RESULTS IN CONTEXT
▸ Best sensitivity to SM ggF HH production
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Fig. 66: (a) Minimum negative-log-likelihood as a function of �, calculated by performing a conditional
signal+background fit to the background and SM signal. The coloured dashed lines correspond to the
combined ATLAS and CMS results by channel, and the black line to their combination. The likelihoods
for the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) channels are scaled to 6000 fb�1.(b) Expected mea-
sured values of � for the different channels for the ATLAS in blue and the CMS experiment in red, as
well as the combined measurement. The lines with error bars show the total uncertainty on each mea-
surement while the boxes correspond to the statistical uncertainties. In the cases where the extrapolation
is performed only by one experiment, same performances are assumed for the other experiment and this
is indicated by a hatched bar.

Topness [302, 296] quantifies the degree of consistency to di-lepton tt̄ production, where there are 6
unknowns (the three-momenta of the two neutrinos, ~p⌫ and ~p⌫̄) and four on-shell constraints, for mt, mt̄,
m

W
+ and m

W
� , respectively. The neutrino momenta can be fixed by minimising the quantity
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subject to the missing transverse momentum constraint, /~pT = ~p⌫T + ~p⌫̄T . Since there is a twofold
ambiguity in the paring of a b-quark and a lepton, we define Topness as the smaller of the two �2s,
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In double Higgs production, the two b-quarks arise from a Higgs decay (h ! bb̄), and therefore
their invariant mass mbb can be used as a first cut to enhance the signal sensitivity. For the decay of the
other Higgs boson, h ! WW ⇤

! `+`�⌫⌫̄, we define Higgsness [296] as follows:
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where mW
⇤ is the invariant mass of the lepton-neutrino pair which resulted from the off-shell W . It
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Fig. 64: Left: upper limit at the 95% CL on the HH production cross section as a function of � =

�HHH/�SM
HHH. The red band indicated the theoretical production cross section. Right: expected likelihood

scan as a function of � = �HHH/�SM
HHH. In both figures the results are shown separately for the five

decay channels studied and for their combination.

3.2.3 Combination of measurements38

A simple combination is performed of the measurements from the ATLAS and CMS collaborations
described in Sections 3.2.1 and 3.2.2. The channels are treated as uncorrelated, in particular because
the systematic uncertainties that we could expect to be correlated between the experiments, such as the
theory uncertainties and the luminosity uncertainty, have little impact on the individual results. Since
the measurements in the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) are only performed by the CMS
experiment, the likelihoods for those two channels are scaled to 6000fb�1 in the combination. The signif-
icances are added in quadrature and the negative-log-likelihood are simply added together. A summary
of the different expected significances, as well as the combination, are shown in Table 55. A combined
significance of 4 standard deviation can be achieved with all systematic uncertainties included.

Table 55: Significance in standard deviations of the individual channels as well as their combination.

Statistical-only Statistical + Systematic
ATLAS CMS ATLAS CMS

HH ! bb̄bb̄ 1.4 1.2 0.61 0.95
HH ! bb̄⌧⌧ 2.5 1.6 2.1 1.4
HH ! bb̄�� 2.1 1.8 2.0 1.8
HH ! bb̄V V (ll⌫⌫) - 0.59 - 0.56
HH ! bb̄ZZ(4l) - 0.37 - 0.37
combined 3.5 2.8 3.0 2.6

Combined Combined
4.5 4.0

Comparisons of the minimum negative-log-likelihoods for ATLAS and CMS are shown in Fig-
ure 65. In those plots the likelihoods for the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) channels

38 Contacts: L. Cadamuro, E. Petit, D. Wardrope
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Fig. 66: (a) Minimum negative-log-likelihood as a function of �, calculated by performing a conditional
signal+background fit to the background and SM signal. The coloured dashed lines correspond to the
combined ATLAS and CMS results by channel, and the black line to their combination. The likelihoods
for the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) channels are scaled to 6000 fb�1.(b) Expected mea-
sured values of � for the different channels for the ATLAS in blue and the CMS experiment in red, as
well as the combined measurement. The lines with error bars show the total uncertainty on each mea-
surement while the boxes correspond to the statistical uncertainties. In the cases where the extrapolation
is performed only by one experiment, same performances are assumed for the other experiment and this
is indicated by a hatched bar.

Topness [302, 296] quantifies the degree of consistency to di-lepton tt̄ production, where there are 6
unknowns (the three-momenta of the two neutrinos, ~p⌫ and ~p⌫̄) and four on-shell constraints, for mt, mt̄,
m

W
+ and m

W
� , respectively. The neutrino momenta can be fixed by minimising the quantity
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subject to the missing transverse momentum constraint, /~pT = ~p⌫T + ~p⌫̄T . Since there is a twofold
ambiguity in the paring of a b-quark and a lepton, we define Topness as the smaller of the two �2s,
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In double Higgs production, the two b-quarks arise from a Higgs decay (h ! bb̄), and therefore
their invariant mass mbb can be used as a first cut to enhance the signal sensitivity. For the decay of the
other Higgs boson, h ! WW ⇤

! `+`�⌫⌫̄, we define Higgsness [296] as follows:
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where mW
⇤ is the invariant mass of the lepton-neutrino pair which resulted from the off-shell W . It

satisfies 0  mW
⇤  mh � mW and mpeak

W
⇤ =

1p
3

r
2

⇣
m2

h + m2
W

⌘
�

q
m4

h + 14m2
hm2

W + m4
W is the

113

FUTURE HH PROJECTIONS
▸ Based on 2018 HL-LHC projection, SM HH significance is 4σ for 3000 fb-1

▸ Boosted bbbb channels can put us over the edge of “discovery”
▸ Plus many more improvements anticipated!

41CERN-LPCC-2018-04

λκ

4− 2− 0 2 4 6 8 10

H
H

) [
fb

]
→

 (g
g

σ

210

310

410

95% CL upper limits - Median expected
bbbb ττbb

)νlνVV(lbb γγbb
ZZ*(4l)bb Combination

Theoretical prediction

 (14 TeV)-13000 fbCMS Phase-2
Simulation Preliminary Assumes no HH signal

λκ

4− 2− 0 2 4 6 8 10

ln
(L

)
Δ

-2

0

1

2

3

4

5

6

7

8

9

10

bbbb
ττbb

)νlνVV(lbb
γγbb

ZZ*(4l)bb
Combination

68%

95%

 (14 TeV)-13000 fbCMS Phase-2
Simulation Preliminary Assumes SM HH signal

Fig. 64: Left: upper limit at the 95% CL on the HH production cross section as a function of � =

�HHH/�SM
HHH. The red band indicated the theoretical production cross section. Right: expected likelihood

scan as a function of � = �HHH/�SM
HHH. In both figures the results are shown separately for the five

decay channels studied and for their combination.

3.2.3 Combination of measurements38

A simple combination is performed of the measurements from the ATLAS and CMS collaborations
described in Sections 3.2.1 and 3.2.2. The channels are treated as uncorrelated, in particular because
the systematic uncertainties that we could expect to be correlated between the experiments, such as the
theory uncertainties and the luminosity uncertainty, have little impact on the individual results. Since
the measurements in the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) are only performed by the CMS
experiment, the likelihoods for those two channels are scaled to 6000fb�1 in the combination. The signif-
icances are added in quadrature and the negative-log-likelihood are simply added together. A summary
of the different expected significances, as well as the combination, are shown in Table 55. A combined
significance of 4 standard deviation can be achieved with all systematic uncertainties included.

Table 55: Significance in standard deviations of the individual channels as well as their combination.

Statistical-only Statistical + Systematic
ATLAS CMS ATLAS CMS

HH ! bb̄bb̄ 1.4 1.2 0.61 0.95
HH ! bb̄⌧⌧ 2.5 1.6 2.1 1.4
HH ! bb̄�� 2.1 1.8 2.0 1.8
HH ! bb̄V V (ll⌫⌫) - 0.59 - 0.56
HH ! bb̄ZZ(4l) - 0.37 - 0.37
combined 3.5 2.8 3.0 2.6

Combined Combined
4.5 4.0

Comparisons of the minimum negative-log-likelihoods for ATLAS and CMS are shown in Fig-
ure 65. In those plots the likelihoods for the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) channels
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theory uncertainties and the luminosity uncertainty, have little impact on the individual results. Since
the measurements in the HH ! bb̄V V (ll⌫⌫) and HH ! bb̄ZZ(4l) are only performed by the CMS
experiment, the likelihoods for those two channels are scaled to 6000fb�1 in the combination. The signif-
icances are added in quadrature and the negative-log-likelihood are simply added together. A summary
of the different expected significances, as well as the combination, are shown in Table 55. A combined
significance of 4 standard deviation can be achieved with all systematic uncertainties included.
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SUMMARY AND OUTLOOK
▸ GNNs, NNs that operate on graph-structured data, 

are state of the art for many HEP tasks including 
H(bb) tagging 

▸ Improving H(bb) tagging allows us to probe the 
high-pT regime and measure Higgs couplings

▸ CMS boosted HH search one of the first to use 
GNNs 
▸ 95% CL upper limit on HH production 

observed (expected) to be 9.9 (5.1) ⨉ SM 
▸ Strongest constraints on κ2V: [0.62, 1.41] 
▸ κ2V=0 excluded at 6.3σ (with other H 

couplings at SM values)!
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▸ Strongest constraints on κ2V: [0.62, 1.41] 
▸ κ2V=0 excluded at 6.3σ (with other H 

couplings at SM values)!
▸ Looking toward the HL-LHC, boosted HH searches 

can put us over the edge of “discovery”
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LHC + HL-LHC SCHEDULE
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GGF HH INTERPRETATION 46
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VBF HH INTERPRETATION 47
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▸ Templates  chosen for 
continuous morphing  

(κ2V, κV, κλ) = (1,1,1), (1,1,0), (1,1,2), (1,0,1), (1,2,1), (1.5,1,1)

DVBF(κ2V, κV, κλ) = μ μVBF
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▸ Specialized components to measure different particles ▸ 100 million channels

COMPACT MUON SOLENOID 48


