ornaroiysics GOy

Joint Experimental-Theoretical Physics Seminar
Fermilab

13 May 2022

Jonathan Feng, UC Irvine



HISTORY

« This talk will be very forward
looking. But to look forward,
let’s first look back.

» Last year was the 50t
anniversary of the birth of
hadron colliders.

 In 1971, CERN's Intersecting
Storage Rings (ISR), with a
circumference of ~1 km,
began colliding protons with
protons at the center-of-
mass energy of 30 GeV
(later raised to 62 GeV).
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ISR’S LEGACY

« 50t anniversaries are fascinating. There have
been many articles and talks by eminent physicists
looking back on the ISR’s legacy.

— “Enormous impact on accelerator physics, but sadly little
effect on particle physics.” — Steve Myers, talk at “The 50th
Anniversary of Hadron Colliders at CERN,” October 2021.

— “There was initially a broad belief that physics action would
be in the forward directions at a hadron collider.... It is
easy to say after the fact, still with regrets, that with an
earlier availability of more complete... experiments at the
ISR, CERN would not have been left as a spectator during
the famous November revolution of 1974 with the J/y
discoveries at Brookhaven and SLAC .” — Lyn Evans and
Peter Jenni, “Discovery Machines,” CERN Courier (2021).

* An obvious question: Are we making a similar
mistake right now at the LHC?
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MISSED OPORTUNITIES AT THE LHC

Pop quiz: What process produces the highest energy neutrinos at the LHC?

Answer: It's not W decays, but pion (and other meson) decays.

* In contrast to the ISR days, there is now broad belief that the most
interesting physics is at high pr.

« But by far the largest fluxes of high-energy light particles (e.g., neutrinos
and anti-neutrinos of all flavors, pions, kaons, D mesons, ...) are in the far-
forward direction.

« We are now currently missing a wide variety of SM opportunities to learn
about neutrinos, QCD, and astroparticle physics.

We may also be missing BSM opportunities to discover new particles.

13 May 2022 Feng 4



NEW PARTICLES

Already ) acting

: The WIMP
Discovered ©

Miracle, which
Too Little to be motivates new

Dark Matter physics in the
4 upper right corner,

is a special case
of the WIMPless
Miracle, which
motivates new
physics along the
whole diagonal.

10-3

Interaction Strength

Impossible to
Discover

Feng, Kumar (2008)
Boehm, Fayet (2003)
Pospelov, Ritz, Voloshin (2007)
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SPECIFIC EXAMPLES

« Suppose there is a dark sector that contains dark matter X and also a dark
force: dark electromagnetism.

» The force carriers of our sector and the dark sector will mix
— perhaps suppressed, but completely generic, since a renormalizable operator

 The result? A new particle, the dark photon A’: like a normal photon, but with
an unknown mass m - and couplings suppressed by ¢. It travels through matter
without interacting, but eventually decays through A" — et e, ...

Holdom (1986)
« Many other similar possibilities (portals, LLPs, FIPs, ...): B—L, L, — L,
and other light gauge bosons, dark Higgs bosons X — K* K~ , axion-like
particles a — yy, sterile neutrinos N — [ [~ v, millicharged particles, ...
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SEARCHES FOR NEW LIGHT PARTICLES

« The existing large LHC detectors are beautifully designed to find strongly-
interacting heavy particles.

« But they are also perfectly designed to not find weakly-interacting light
particles. These are dominantly produced in the rare decays of light
particles: «, n, K, D and B mesons along the forward direction, and so the
new particles escape through the blind spots down the beamline.

* There are both SM and BSM motivations to explore the “wasted” 6, ~
100 mb and cover these blind spots in the far forward region.

 We cannot block the beams, but if we go far away, the proton beams are
bent by magnets, whereas light, weakly-interacting particles go straight.
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THE BASIC IDEA

Feng, Galon, Kling, Trojanowski (2017)
Kling, Trojanowski (2018)
Feng, Galon, Kling, Trojanowski (2018)
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THE FAR-FORWARD REGION

New particle A’ is produced at
ATLAS travels along the beam

rock, and finally decays in tunnel
TIM12, 480 m from ATLAS

TI12 near UJ12
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PARTICLE PATH FROM ATLAS TO Ti12

Dougherty, CERN Integration (2019) \i

A\
&

13 May 2022 Feng 10



HOW BIG DOES THE DETECTOR HAVE TO BE?

e Momentum: — 250 MeV
S

1 TeV

« Space: 12 cm
480 m

|

« From pion decays, the opening angle is
0.2 mrad (n ~ 9); cf. the moon (7 mrad).

« TeV dark photons (or any other new
particles produced in &, n, K, D, B decay)
are far more collimated than shown below,
motivating a new, small, fast, cheap
experiment at the LHC.
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FASER TIMELINE

«  September 2017: Initial proposal
« July 2018: LOI submitted to the CERN LHCC

* October 2018: Approval from ATLAS SCT and LHCb Collaborations for use of
spare detector modules

 November 2018: Technical Proposal submitted to the LHCC

 November 2018 — January 2019: Experiment funded by the Heising-Simons
and Simons Foundations

« March 2019: FASER approved as 8t LHC detector by CERN

« December 2019: FASERv approved as 9% LHC detector by CERN

« March 2021: FASER fully installed, commissioning of the detector begins
« May 2021: FASERYv finds first candidate collider neutrinos

« April 2022: FASER and FASERYv begin collecting data in Run 3
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IRST FASER COLLABORATION MEETING
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FASER COLLABORATION TODAY

75 collaborators, 22 institutions, 9 countries
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THE FASER DETECTOR

* Nothing incoming and 2 ~TeV, opposite-sign charged tracks pointing back
to the ATLAS IP: a “light shining through (100 m-thick) wall” experiment.

« Scintillators veto incoming charged tracks (muons), magnets split the
charged tracks, which are detected by tracking stations and a calorimeter.

Scintillators =

.
““

Calorimeter

Baseplates
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FASER IN TUNNEL TI12

« The beam collision axis was located to mm accuracy by the CERN
survey department. To place FASER on this axis, a trench was required
to lower the floor by 46 cm.

« The trench was completed by an Italian firm just hours before COVID
shut down CERN in Spring 2020.

Spring 2020 Summer 2020
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MAGNETS

FASER includes 3 magnets: 1.5 m, 1 m, and 1m long.

0.57 T permanent dipoles with an inner diameter of 20 cm, require little
maintenance.

Constructed by the CERN magnet group.
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TRACKERS

 ATLAS tracker consists of ~3000 SCT modules.

« ~300 spares were never used. ~100 of these were generously donated to
FASER: 8 modules x 3 tracking planes x 4 tracking stations at FASER.
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SCINTILLATORS

» 4 veto scintillators, each 2cm x 30cm x 30cm, upstream of the detector.
Efficiency of each one is > 99.99%, makes muon background negligible.

« Additional beam backgrounds, simulated with FLUKA and validated with
pilot detectors in 2018, are also expected to be negligible.
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DARK PHOTON SENSITIVITY REACH
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* In the coming years, many current and proposed experiments will probe
the MeV-GeV region favored by WIMPless miracle considerations, muon

g-2 explanations, self-interacting DM, ATOMKI anomalies, ...
 FASER probes new parameter space with just 1 fb-' starting in July 2022.

« Even without a detector upgrade, the HL-LHC extends (Luminosity*Vol)
by factor of 3000 — could detect as many as 10,000 dark photons.
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COLLIDER NEUTRINOS

* In addition to the possibility of hypothetical new light, weakly-interacting
particles, there are also known light, weakly-interacting particles: neutrinos.

« The high-energy ones, which interact most strongly, are overwhelmingly
produced in the far forward direction. Before May 2021, no candidate
collider neutrino had ever been detected.

» If they can be detected, there is a fascinating new world of LHC neutrinos
that can be explored.
— The neutrino energies are ~TeV, highest human-made energies ever.

— All flavors are produced (n - v,, K— v,, D - v.) and both neutrinos and anti-

neutrinos.
De Rujula, Ruckl (1984); Winter (1990); Vannucci (1993)
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FIRST COLLIDER NEUTRINO

* In 2018 a FASER pilot emulsion detector
with 11 kg fiducial mass collected 12.2 tb""
on the beam collision axis (installed and
removed during Technical Stops).

* In May 2021, the FASER Collaboration
announced the direct detection of 6
candidate neutrinos above 12 expected
neutral hadron background events (2.7c).
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LOCATION, LOCATION, LOCATION

FASER Pilot Detector

Suitcase-size, 4 weeks
$0 (recycled parts)

6 candidate neutrinos

’

All previous
collider detectors

Building-size, decades

This opens up a new field: ~$10°

neutrino physics at colliders 0 candidate neutrinos
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THE FASERv DETECTOR

 FASERYv will detect neutrinos of all flavors; also SND@LHC, a
complementary, slightly off-axis experiment on the other side of ATLAS.

— 25cm x 30cm x 1.1m detector consisting of 770 emulsion layers interleaved
with 1 mm-thick tungsten plates; target mass = 1.1 tonnes.

— Emulsion swapped out every ~10-30 fb-1, total 10 sets of emulsion for Run 3.

Scintillators &

y . e
Calorimeter

.

Tracking Stations

Baseplates
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NEUTRINO PHYSICS

* In Run 3 (2022-25), the goals of FASERv are to

— Detect the first collider neutrino.

— Record ~1000 v¢, ~10,000 v, , and ~10 v, interactions at TeV energies, the
first direct exploration of this energy range for all 3 flavors.

— Distinguish muon neutrinos from anti-neutrinos by combining FASER and
FASERYv data, and so measure their cross sections independently.

— Add significantly to the number of v, and identify the first anti-v..
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FORWARD PHYSICS FACILITY

« FASER, FASERv, and SND@LHC are currently highly constrained by
1980’s (LEP!) infrastructure that was never intended to support
experiments.

* The rich physics program in the far-forward region therefore strongly
motivates creating a dedicated Forward Physics Facility to house far-
forward experiments for the HL-LHC era from 2029-2040.

 FPF Meetings
— FPF Kickoff Meeting, 9-10 Nov 2020, https://indico.cern.ch/event/955956
— FPF2 Meeting, 27-28 May 2021, https://indico.cern.ch/event/1022352
— FPF3 Meeting, 25-26 Oct 2021, https://indico.cern.ch/event/1076733
— FPF4 Meeting, 31 Jan-1 Feb 2022, https://indico.cern.ch/event/1110746

 FPF Short Paper: 75 pages, 80 authors completed in Sep 2021 (2109.10905,
Physics Reports 968, 1 (2022)).

 FPF Snowmass White Paper: Feng, Kling, Reno, Rojo, Soldin et al. A
comprehensive, 429-page, 392-author+endorser summary (2203.05090).
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THE LOCATION

« The CERN civil engineering team has considered many sites around
the LHC ring that are on the beam collision axis of an IP.

« A preferred location has been identified ~620-680 m west of the ATLAS
IP, shielded by ~200 m of rock. The site is on CERN land in France.
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CAVERN AND SHAFT

« Cavern: 65m long, 8m wide/high. Shaft: 88m-deep, 9.1m-diameter.

 The FPF is completely decoupled from the LHC: no need for a safety corridor
connecting the FPF to the LHC, preliminary RP and vibration studies indicate
that FPF construction will have no significant impact on LHC operation.
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SURFACE BUILDINGS

O <42
AN INE |

25t overhead crane

Kincso Balazs,
John Osborne,

CERN CE (2022)
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COST AND TIMELINE

* Very preliminary (class 4) cost estimate: 23 MCHF (CE) + 15 MCHF

(services) = 40 MCHF (+50%/-30%), not including experiments.

» Timeline presented at Chamonix workshop (Feb 2022)

J. Boyd

Moilllysis By

Possible FPF schedule

Preliminary (optimistic) schedule of HL-LHC

HL-LHC schedule from DG presentation,

New-Year (on-line) meeting, 13/1/22

connection to LHC)

experiments

Installation of services
(CERN technical teams,
busy during LS3)

Installation and
commissioning of the
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- Allow physics data taking for most of the luminosity of the HL-LHC
Not overload CERN technical teams during LS3
Design of facility would allow different experiments to come online

at different times
Requirements:

Can access the facility during LHC operations (RP study ongoing)
Can complete CE works before the end of LS3
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THE EXPERIMENTS

» At present there are 5 experiments being developed for the FPF; these
are works in progress, with much more work to be done.

« Pseudo-rapidity coverage in the FPF is n > 5.5, with most experiments
on the LOS coveringn > 7.

FASER2 FASERv2 FORMOSA
magnetized spectrometer emulsion-based plastic scintillator array
for BSM searches neutrino detector for BSM searches
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AdvSND FLArE
electronic LAr based Kling (2022)
neutrino detector neutrino detector
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THE EXPERIMENTS

FASERZ2: upgraded FASER (tracker
+ magnetic spectrometer) 20 m
long, targeting LLPs.

FASERvZ2, AdvSND: successors to
FASERv and SND@LHC, ~few to
20 tonne detectors to study TeV
neutrinos and differentiate flavors.

Vertex det Had Cal
EM Cal
04m ]
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Tracking Stations
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THE EXPERIMENTS

« FORMOSA: successor to MilliQan,
Tm x 1m x 5m scintillator bars + PMTs

looking for milli-charged particles,
particles with EDMs, MDMs, and

similar signatures.

 FLArE: Forward Liquid Argon
Experiment, ~1m x 1m x 7m noble
liquid (Ar or Kr) TPC for neutrino
studies, light DM searches.
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FPF PHYSICS

 The FPF is a general purpose facility with a broad SM and BSM physics
program that expands on the physics of FASER and FASERv. Here |
will just give a few examples. For more, see the FPF White Paper.
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DARK SECTOR SEARCHES

The dedicated detectors have
significant discovery potential for a

wide variety of BSM/LLP models: dark

photons; B-L and related gauge
bosons; dark Higgs bosons; HNLs
with couplings to e, mu, tau; ALPs
with photon, gluon, fermion couplings;
light neutralinos, inflaton, relaxion,
and many others.

FPF White Paper (2022)
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NEUTRINO PHYSICS AT THE FPF

» At the FPF, three proposed ~10-ton detectors FASERv2, AdvSND, and
FLArE will each detect ~100,000 v,, ~1,000,000 v,, and ~1000 v,
interactions at TeV energies, providing high statistics samples for all
three flavors in an energy range that has never been directly explored.

« Will enable precision studies of the tau neutrino.

« Can also distinguish neutrinos and anti-neutrinos for muon and tau.
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QCD

« The FPF will also support a rich program of QCD and hadron structure studies.

« Forward neutrino production is a a probe of forward hadron production, BFKL
dynamics, intrinsic charm, ultra small x proton structure, with important
implications for UHE cosmic ray experiments.

» Neutrino interactions will probe DIS at the TeV-scale, constrain proton and
nuclear structure, pdfs.

hadron propagation

FPF

neutrino DIS at
the TeV scale t’

hadron

probing intrinsic charm fragmentation

strangeness
from dimuons

BFKL dynamics,
non-linear QCD, CGC

forward D-meson
production

constraints on proton &
nuclear PDFs from neutrino
structure functions

ultra small x proton structure
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QCD

« The FPF will probe proton structure at ultra small x ~ 107 (and also
high x ~ 1).

* In addition to the intrinsic interest in QCD, ultra small-x physics will
become more and more important at higher energies, for example, in
making precise predictions for 6(gg — h) at a 100 TeV pp collider.
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MILLI-CHARGED PARTICLES

« A completely generic possibility motivated by dark matter, dark sectors. Currently
the target of the MilliQan experiment, located at the LHC near the CMS

experiment in a “non-forward” tunnel.

« The MilliQan Demonstrator (Proto-MilliQan) already probes new region. Full
MilliQan can also run in this location in the HL-LHC era, but the sensitivity may
be improved significantly by moving it to the FPF (FORMOSA).
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DARK MATTER DIRECT DETECTION

« Light DM with masses at the GeV scale and

below is famously hard to detect.

— Galactic halo velocity ~ 10-3 ¢, so kinetic
energy ~ keV or below.

« Atthe LHC, we can produce DM at high
energies, look for the resulting DM to
scatter in FLArE, Forward Liquid Argon
Experiment, a proposed 10 to 100 tonne
LArTPC.

mesons, brem, ... -> A’ -> yx 2 ye > xe EM shower

Single-e-
ATLAS IP prompt FASERV  initiated
2y, : X ;* X e e i
O"‘ A
7"07 n -
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DM production DM scattering

« FLArE is powerful in the region
favored/allowed by thermal freezeout.
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SUMMARY

« Colliders can look for heavy, strongly-interacting particles and light,
weakly-interacting particles; the LHC is currently missing half of these
possibilities.

« The FPF is uniquely positioned to fully realize the LHC’s physics
potential for both SM and BSM physics in the far forward region, greatly
extending the LHC physics program for relatively little cost.

« Plan: CDRs for the facility and experiments in the next 12-18 months,
construction in LS3, physics in HL-LHC Run 4. Much work to be done!
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FPF CIVIL ENGINEERING

........

13 May 2022
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Balazs (2022)
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WHERE THE PIONS ARE

proton - (anti)proton cross sections
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« Enormous g, ~100 mb, « Pions typically have pr ~ 250 MeV,
currently wasted in BSM but large flux with p ~ TeV within 1
searches. mrad (n > 7.6) of the beamline.
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FPF NEUTRINO

DISTRIBUTIONS

Where do the LHC neutrinos come from?
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Neutrinos Interacting with Detector [1/bin]
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—— SIBYLL 2.3d
— — EPOSLHC
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Kling (2022)
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FPF NEUTRINO DISTRIBUTIONS

Neutrino Fluxes and Rates

Event rates at LHC neutrino experiments
estimated with two LO MC generators: SIBYLL / DPMJET

Detector Number of CC Interactions
Name Mass Coverage Vet Ve Vutvy, Vet Uy
LHC Run3 FASERv 1 ton n2 8.5 1.3k / 4.6k | 6.1k / 9.1k 21 /131
SND@QLHC | 800kg T<n<8:b 180 / 500 1k / 1.3k 10 22
FASERv2 | 20 tons nz8 178k / 668k | 943k / 1.4M | 2.3k / 20k
HL-LHC FLArE 10 tons 1 e 36k / 113k | 203k / 268k | 1.5k / 4k
AdvSND 2tons | 72510 <9.2 || 6.5k / 20k 41k / 53k 190 / 754

Large spread in current generator predictions

/\

Challenge:
For neutrino physics measurement
we need to quantify and reduce
neutrino flux uncertainties

13 May 2022

Forward neutrino flux measurement

can help to improve our

understanding of underlying physics.

Kling (2022)
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FPF MUON BACKGROUND FROM FLUKA

° In order to get the muon fluence in the FPF cavern:

muon information
is saved here

IP1 1st step

p-p collisions
616 m

348.7 m

Cerutti, Sabate-Gilarte (2022)
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FPF MUON BACKGROUND FROM FLUKA
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Result from 2" step simulation.
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