

Highlights from the Recontres de Moriond Zeynep Demiragli (Boston University)

April 22 2022, Wine and Cheese Seminar, Fermilab

Moriond was in person!

Disclaimer 1: I was not there ... but ...

- Over 140 participants in Moriond EW and over 100 participants in Moriond QCD
- (Was told) great atmosphere & lots of interaction & great skiing conditions

Disclaimer 2: CMS alone has over 25 new results!

- Naturally there will be some personal bias on the "more" highlighted results in this presentation.
- When related, tried to bring in the insight from the other side of the ring, ATLAS

- And of course many new results!

Moriond was in person!

Full (impressive) list of results that were presented at Moriond (EW/QCD)!

CMS-PAS-SUS-21-007	Search for supersymmetry in final states with a single electron or muon using angular correlations and heavy object		
	tagging in proton-proton collisions at vs= 13 tev. Measurement of differential cross sections for the production of top quark pairs and of additional jets in pp collisions	CMS-PAS-HIG-21-010	Search for a charged Higgs boson decaying into a heavy neutral Higgs boson and a W boson in proton-pr collisions at \sqrt{s} = 13 TeV.
<u>CM3-PA3-TOP-20-006</u>	at √s= 13 <u>TeV</u>	CMS-PAS-HIG-21-016	Search for exotic Higgs boson decays H \rightarrow AA \rightarrow 4 γ with events containing two merged photons in proton-p collisions at \sqrt{s} = 13 TeV
CMS-PAS-TOP-21-008	Measurement of the top quark pole mass using $t = t$ +jet events in the dilepton final state at $\sqrt{s} = 13$ $t \in V$		
CMS-PAS-TOP-21-011	Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton- proton collisions at s√=s= 13 <u>TeV</u>	CMS-PAS-HIG-21-015	Search for the Higgs boson decay to a pair of electrons in proton-proton collisions at $s\sqrt{s} = 13$ TeV.
CMS-PAS-EXO-20-011	Search for a heavy composite Majorana neutrino	CMS-PAS-HIG-20-016	Search for high mass resonances decaying into W++W−− in the dileptonic final state with 138 fb−1−1 of proto collisions at s√=s= 13 TeX
CMS-PAS-B2G-20-009	Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton- proton collisions at $s\sqrt{=s= 13}$ TeV.	CMS-PAS-SMP-21-014	Search for exclusive $\chi\chi \rightarrow$ WW and $\chi\chi \rightarrow$ ZZ production in final states with jets and forward protons
CMS-PAS-TOP-21-007	Search for central exclusive production of top quark pairs in proton-proton collisions at $s\sqrt{=s}=$ 13 TeV with tagged	CMS-PAS-SMP-21-013	Observation of WW from double-parton scattering in proton-proton collisions at $s\sqrt{s}=13$ TeV.
CMS-PAS-PRO-21-001	Proton reconstruction with the CMS Precision Proton Spectrometer in Run 2	CMS-PAS-B2G-22-003	Nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks
CMS-PAS-EXO-19-009	A search for new physics in central exclusive production using the missing mass technique with the CMS-TOTEM precision proton spectrometer	CMS-PAS-EXO-21-003	Probing Majorana neutrinos and the Weinberg operator in the same-charge dimuon channel through vector fusion processes in proton-proton collisions at \sqrt{s} = 13 TeV.
CMS-PAS-HIN-21-009	Observation of II lepton pair production in ultraperipheral nucleus-nucleus collisions	CMS-PAS-EXO-21-010	Search for resonant and non-resonant production of pairs of identical dijet resonances in pp collisions at \sqrt{s}
CMS-PAS-HIG-19-016	Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay	CMS-PAS-EXO-20-006	Search for Z' bosons decaying to pairs of heavy Majorana neutrinos in proton-proton collisions at \sqrt{s} = 13
	channel with pp collisions at vs= 13 tev with the CMS detector	CMS-PAS-HIG-21-006	Search for CP violation in $\ddagger t$ and $\ddagger t$ production in multilepton channels at \sqrt{s} = 13 TeV.
CMS-PAS-HIG-21-001	Searches for additional Higgs bosons and vector-like leptoquarks in <u>utfinal</u> states in proton-proton collisions at √s= 13 TeV.	CMS-PAS-HIG-20-010	Search for <u>nonresonant</u> Higgs boson pair production in final states with two bottom quarks and two tau lep proton-proton collisions at \sqrt{s} = 13 TeV
CMS-PAS-HIG-20-013	Measurements of properties of the Higgs boson in the W boson pair decay channel in proton-proton collisions at \sqrt{s} = 13 TeV	CMS-PAS-HIG-21-008	Direct search for the standard model Higgs boson decaying to a charm quark-antiquark pair
CMS-PAS-B2G-21-004	Search for pair-produced vector-like leptons in ≥≥ 3b ++ N ╦, final states		

Standard Model: W & Z Measurements

We are sensitive to an enormous dynamic range of cross sections at the LHC

Vector Bosons processes are very well understood at hadron colliders:

- Probe QCD effects
- Measure EWK parameters, couplings/branching fractions, AFB
- Search for rare decay channels

DY forward-backward asymmetry measurements

Forward-Backward Asymmetry, **A**_{FB}, compares the angular distribution of the final state lepton with respect to the initial state quark. **SMP-21-002**

 N_F = number of events with $cos(\theta) > 0$ $N_{\rm B} =$ number of events with cos(θ) < 0

Why is it interesting?

- new gauge bosons, quark-lepton compositeness, extra dimensions, vector-like fermions, dark matter models, or leptoquarks
- measuring separately in e and μ gives sensitivity to lepton non-universality.

W Branching Fractions - Lepton Flavor Universality

Test of the universality of τ and μ lepton couplings in Wboson decays with ATLAS <u>Nature Physics 21</u>

Unique approach: using di-leptonic top quark pairs:

- One W decaying promptly to µ (or e)
- The other decaying $W \rightarrow \tau v_{\tau} \rightarrow \mu v_{\mu} v_{\tau} v_{\tau}$
 - Using pT and d^μ₀ to distinguish the τ decays from the prompt decay
 Tension with LEP, and better

Tension with LEP, and better precision

First observation of Z to cc

In attempt to measure $H \rightarrow cc$ in associated VH production, ended up with the first **observation of Z \rightarrow cc** at a hadron collider! Analysis validated by first looking for VZ(Z→cc) process <u>HIG-21-008</u>

Very challenging measurement: large QCD multijet background and difficulty of identifying charm quark jets in a hadronic environment

<u>Resolved (2 resolved AK4 jets)</u>

- DeepJet for charm Tagging: Multiclassifier DNN architecture that makes use of CNN and RNN layers
- c-jet energy regression using DNN architecture
- Kinematic fit
- BDT for signal extraction

Merged (1 AK15 jet)

Entrie: 10⁸ CMS 🔶 Data B uncertainty VZ(Z→cc) — S+B Preliminary VH(H→bb) $VZ(Z \rightarrow c\overline{c})$ W+jets 10 Single Top VV(other 10⁵ 10⁴ 10^{3} 10² 10 Data Background C -2.5-3 -1.5 S/(S+B) Weighted Events **CMS** Observed VZ(Z→cc) VV(other) Preliminarv 1000 Single Top tt **Merged-jet** Z+jets W+jets All categories VH(H→cc), μ=7.7 800 S/(S+B) weighted 600 200 100 50

100

120

140

-50

60

• Particle Net cc-tagger based on a graph neural network (GNN) that treats the jet as an unordered set of particles

Mass regression on the AK15 jet

• BDT for signal extraction

First observation of $Z \rightarrow cc$ at (5.7 σ) μ (Z \rightarrow cc) = 1.01 + 0.23 - 0.21

160

Observation of WW from double-parton scattering

DPS W±W± signal

 $\sigma_{
m AB}^{
m DPS}$

=

 $\frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{eff}}$

SPS production EW+QCD

A lot of interesting physics can be learned from multi parton scattering:

Probes the internal structure of a proton & Provides input for the tuning of MC simulations & Background for SM & BSM processes

Remember: DPS cross section grows strongly with center of mass energy

Observed with 6.7 s.d. (expected: 6.2 s.d.) production cross section of $\sigma_{DPS}^{WW} = 0.16 \pm 0.02 \text{ (stat)} \pm 0.02 \text{ (syst)} \pm 0.02 \text{ (model) pb}$ в expected cross section from pythia: 0.173 pb \pm 40% (tune)

effective cross section $\sigma_{eff} = 12.16 + 3.0 - 2.2$ mb

SMP-21-013

Signal & background discrimination based on BDT **classifiers**; trained separately against WZ and fake lepton backgrounds

CMS Preliminary

Observation of WWW and Measurement of ttW

Observation of WWW production in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector <u>STDM-2019-09</u>

- Test of SM gauge boson self-interactions, deviations would
- Among the least-understood SM processes given the small production cross-section.
- In this analysis: Considered 2I and 3I final states & Two BDTs improve signal to background separation

CMS had before observation of VVV with 3.3 σ in WWW. PRL 125 (2020) 151802

	Fit	$\mu(WWW)$	Significance observed (expected
nint B2IVI	$e^{\pm}e^{\pm}$	1.54 ± 0.76	2.2 (1.4) σ
	$e^{\pm}\mu^{\pm}$	1.44 ± 0.39	$4.1 (3.0) \sigma$
	$\mu^{\pm}\mu^{\pm}$	2.23 ± 0.46	5.6 (2.7) σ
s used to	2ℓ	1.75 ± 0.30	$6.6 (4.0) \sigma$
	3ℓ	1.32 ± 0.37	$4.8 (3.8) \sigma$
	Combined	1.61 ± 0.25	8.0 (5.4) σ
ΛΛ <i>Ι</i>			

Measurement of the cross section of top quark-antiquark pair production in association with a W boson

- t-W scattering sensitive to EWK coupling
- R ttW+/ ttW- asymmetry (~1.6) as expected
 Cross-section ~1.5x higher than NLO+NNLL / NLO w. FxFx ME
- One of the important systematics
 - <u>50% uncertainty</u> is applied on the triboson production, as the main contribution to this background <u>comes from the WWW</u>

Getting precise with Top!

Top quark being the heaviest SM particle (with y_t nearly 1)!

- affects the EW vacuum stability.
- It also decays before hadronisation and spin decorrelation, enabling a direct access to top mass and polarization!

BSM extensions predict:

- Modifications in top quark couplings
- Observation of the top production or decay processes that would nominally be suppressed (or forbidden) in SM

Most precise single inclusive measurement is:

- $\Delta \sigma / \sigma = 2.4\%$ (from ATLAS)
- Theory predictions has $\Delta \sigma / \sigma = +4.8/-5.5\%$

Differential measurements, cross sections in bins of 1,2, or 3 kinematic variables at particle level and/or Parton level are crucial to the LHC program

Getting precise with Top!

Differential tt cross-section measurements using boosted top quarks in the all-hadronic final state **ATLAS-CONF-2021-050**

- A focus on highly-boosted top-quark final states probes the QCD ttbar production processes in the TeV scale range
- DNN based top-quark-tagging algorithm
- Differential measurements on particle and on parton level

CMS-TOP-20-006

- Measuring as a function of top and ttbar kinematic additional jets
- Compared to MC with NLO accuracy and also beyond

Top Mass

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} summary, √s = 7-13 TeV	March 2022				
World comb. (Mar 2014) [2] stat	total stat					
total uncertainty	m _{ten} ± total (stat ± svst)	s Ref.				
LHC comb. (Sep 2013) LHCtopWG	$173.29 \pm 0.95 (0.35 \pm 0.88)$	7 TeV [1]				
World comb. (Mar 2014)	173.34 ± 0.76 (0.36 ± 0.67)	1.96-7 TeV [2]				
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]				
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]				
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]				
ATLAS, single top	172.2 ± 2.1 (0.7 ± 2.0)	8 TeV [5]				
ATLAS, dilepton	172.99 ± 0.85 (0.41 ± 0.74)	8 TeV [6]				
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]				
ATLAS, I+jets	$172.08 \pm 0.91 \ (0.39 \pm 0.82)$	8 TeV [8]				
ATLAS comb. (Oct 2018)	172.69 ± 0.48 (0.25 ± 0.41)	7+8 TeV [8]				
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]				
CMS, I+jets	173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]				
CMS, dilepton	172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]				
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]				
CMS, I+jets	172.35 ± 0.51 (0.16 ± 0.48)	8 TeV [13]				
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]				
CMS, all jets	$172.32 \pm 0.64 \ (0.25 \pm 0.59)$	8 TeV [13]				
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]				
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]				
CMS, I+jets	$172.25 \pm 0.63 \ (0.08 \pm 0.62)$	13 TeV [15]				
CMS, dilepton	$172.33 \pm 0.70 \ (0.14 \pm 0.69)$	13 TeV [16]				
CMS, all jets	$172.34 \pm 0.73 \ (0.20 \pm 0.70)$	13 TeV [17]				
CMS, single top	$172.13 \pm 0.77 \ (0.32 \pm 0.70)$	13 TeV [18]				
CMS, boosted jet mass	172.6 ± 2.5 (0.4 ± 2.4)	13 TeV [19]				
* Preliminary	[1] ATLAS-CONF-2013-102[8] EPJC 79 (2019) 290[2] arXiv:1403.4427[9] ATLAS-CONF-2019-04[3] EPJC 75 (2015) 330[10] JHEP 12 (2012) 105[4] EPJC 75 (2015) 158[11] EPJC 72 (2012) 2202[5] ATLAS-CONF-2014-055[12] EPJC 74 (2014) 2758[6] DEPC 74 (2014) 2758[12] EPJC 74 (2014) 2758	[15] EPJC 78 (2018) 891 [16] EPJC 79 (2019) 368 [17] EPJC 79 (2019) 313 [18] JHEP 12 (2021) 161 [19] PRL 124 (2020) 202001				
	[0] FED 701 (2010) 350 [13] FRD 93 (2016) 07200 [7] JHEP 09 (2017) 118 [14] EPJC 77 (2017) 354	ר י.				
165 170 1	75 180	185				
m _{top} [GeV]						

Direct measurements of the top mass reach a precision of: $m_t = 172.44 \pm 0.48 \text{ GeV}$

The direct measurements rely on the reconstruction of the top quark decay products -> Relying on MC $m_t^{MC} = m_t^{pole} + \Delta_{MC} O(1 \text{ GeV})$

TOP-21-008

First measurement of top quark pole mass using normalized differential cross section of ttbar+ jet in CMS at 13 TeV

$$\mathcal{R}(m_{t},\rho) = \frac{1}{\sigma_{t\bar{t}+jet}} \frac{d\sigma_{t\bar{t}+jet}}{d\rho}$$

with $\rho = \frac{2m_{0}}{m_{t\bar{t}+jet}}$, $m_{0} = 170 \text{ GeV}$
mtpole =
(CT18NLO)
172.16 ± 1.34 (fit+PDF+extr) +0.50 (scale)
(ABMP16NLO)
172.94 ± 1.26 (fit+PDF+extr) +0.51 (scale)

The Higgs Boson - 10th year anniversary coming up

2012 - I am born!
2013 - First steps
2014 - Who am I?
2015 - Why am I alone?
2016 - Not afraid of dark!
2017 - Trip to the tau-land
2018 - From top to bottom
2019 - I am getting precise
2020 - Meet 2nd generation
2021 - How broad am I?
2022 - I am charming!

From G. Landsberg

10 new results from HIG @ Moriond!

CMS-PAS-HIG-19-016	Measurement of the Higgs boson inclusive and differential fiducial productors cross sections in the diphoton decay channel with pp collisions at \sqrt{s} = TeV with the CMS detector
CMS-PAS-HIG-21-001	Searches for additional Higgs bosons and vector-like leptoquarks in $ au au$ fistates in proton-proton collisions at $\sqrt{s}=$ 13 TeV
CMS-PAS-HIG-20-013	Measurements of properties of the Higgs boson in the W boson pair decorrection channel in proton-proton collisions at \sqrt{s} = 13 TeV
CMS-PAS-HIG-21-010	Search for a charged Higgs boson decaying into a heavy neutral Higgs bo and a W boson in proton-proton collisions at $\sqrt{s}=$ 13 TeV
CMS-PAS-HIG-21-016	Search for exotic Higgs boson decays $H \rightarrow AA \rightarrow 4\gamma$ with events contain two merged photons in proton-proton collisions at $\sqrt{s} = 13$ TeV
CMS-PAS-HIG-21-015	Search for the Higgs boson decay to a pair of electrons in proton-proto collisions at $\sqrt{s} =$ 13 TeV
CMS-PAS-HIG-20-016	Search for high mass resonances decaying into W^+W^- in the dileptonic f state with 138 fb ⁻¹ of proton-proton collisions at \sqrt{s} = 13 TeV
CMS-PAS-HIG-21-006	Search for CP violation in $t\bar{t}$ H and tH production in multilepton channels $\sqrt{s}=$ 13 TeV
CMS-PAS-HIG-20-010	Search for nonresonant Higgs boson pair production in final states with to bottom quarks and two tau leptons in proton-proton collisions at \sqrt{s} = 13
CMS-PAS-HIG-21-008	Direct search for the standard model Higgs boson decaying to a charm qu antiquark pair

Differential Higgs Measurements

Measurements of properties of the Higgs boson in the W boson pair decay channel <u>HIG-20-013</u>

Targeting ggH, VBF, VH (hadronic) and VH(leptonic) production and final states with 2-4 leptons Results on inclusive and differential cross sections, as well as

coupling modifiers of the Higgs to vector bosons and fermions.

Combined measurement of the total and differential cross sections in the $H \rightarrow \gamma \gamma$ and the $H \rightarrow ZZ \rightarrow 4\ell$

ATLAS-CONF-2022-002

Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel <u>HIG-19-016</u>:

Differential fiducial and double-differential cross section measurements of large range of variables including measurements of new variables such as angular observables

The inclusive fiducial cross section is measured to be

 $\sigma_{\rm fid} = 73.40^{+5.4}_{-5.3}$ (stat) $^{+2.4}_{-2.2}$ (syst) fb,

Consistent with expectation of 75.44 \pm 4.1 fb

Rare Higgs Processes

Direct search for the standard model Higgs boson decaying to a charm quarkantiquark pair HIG-21-008

Searching for H to cc in associated VH production. The search has a resolved and a boosted category. New ML based c and cc tagging algorithms, fitting jet mass in categories based on kinematic BDT and $H \rightarrow cc$ tagging score, new jet mass regressions

Expected 7.6 x SM

 $1.1 < |\kappa_c| < 5.5$ obs ($|\kappa_c| < 3.4$ exp)

Search for the Higgs boson decay to a pair of electrons HIG-21-015

Considers 4 categories with gluon fusion production, and 2 categories with VBF production. Final approach is a fit to m(ee) distribution

Most stringent limits to date on B(H to ee) 3.0×10⁻⁴ (SM 5x10⁻⁹)

15

0L

1L

2L

Double Higgs Production

V(φ)

The trilinear coupling λ_3 is directly accessible through Higgs boson pair production

While the HH xsec is too small, non resonant searches can be sensitive to BSM physics!

		$\sigma_{HH}/\sigma_{HH}^{SM}$ 95% CL		κ _λ 95% CL		
		Obs.	Exp.	Improvement wrt. 36 fb ⁻¹	Obs.	Exp.
	ΔΤΙ Δς	4.2	57	×4.6 (2.3)	[-1567]	[-2.4.7
$HH ightarrow bb \gamma \gamma$	CMS	7.7	5.2	×3.6 (1.9)	[-3.3, 8.5]	[-2.5, 8
	ATLAS	4.7	2.0	28(2)	[24 0 2]	[20.0
$HH \rightarrow bb\tau\tau$	CMS	3.3	5.2	×4.8 (2.5)	[-1.8, 8.8]	[-3.0, 9
$HH \rightarrow bbbb$	ATLAS	—	-	_	_	_
1111 7 0000	CMS	3.9	7.8	×4.7 (2.4)	[-2.3, 9.4]	[-5.0, 1
boosted	CMS	9.9	5.1	-	[-9.9, 16.9]	[-5.1, 1
1111 . 11.77	ATLAS	—	—	-	—	_
$HH \rightarrow bbZZ$	CMS	30	37	-	[-9.0, 14.0]	[-10.5, 1
Multilanten	ATLAS	_	-	-	_	-
wuitliepton	CMS	21.8	19.6	-	[-7.0, 11.7]	[-7.0, 1
Combination	ATLAS	3.1	3.1	×3.2 (1.6) ^a	[-1.0, 6.6]	[-1.2, 7
$(bb\gamma\gamma+bb\tau\tau)$	CMS	-	-	_	-	-

Double Higgs Production

to bottom quarks **B2G-22-003**

Exotic Higgs

Search for exotic Higgs boson decays H to AA to 4 photons with events containing two merged photons **HIG-21-016**

The hypothetical particle A is a low-mass, boosted scalar decaying promptly to two highly merged photons, misreconstructed as a single photon-like object.

Buried under the SM H->diphoton :)

neutral Higgs boson and a W boson HIG-21-010

Exotic Higgs - with excesses (!)

dileptonic final state <u>HIG-20-016</u>

CERNCOURIER

CMS **Dijet excess intrigues at CMS**

The Standard Model (SM) has been extremely successful in describing the behaviour of elementary particles. Nevertheless, conundrums such as the nature of dark matter and the cosmological matter-antimatter asymmetry strongly suggest that the theory is incomplete. Hence, the SM is widely viewed as an effective low-energy limit of a more fundamental underlying theory that must be modified to describe particles and their interactions at higher energies.

A powerful way to discover new particles expected from physics beyond the SM is to search for high-mass dijet or multi-jet resonances, as these are expected to have large production cross-sections at hadron colliders. These searches look for a pair of jets originating from a pair of quarks or gluons, coming from the decay of a new particle "X" and appearing as a narrow bump in the invariant dijet-mass distribution. Since the energy scale of new physics is most likely high, it is natural to expect these new particles to be massive.

CMS and ATLAS have performed a of single-dijet-resonance suite searches. The next step is to look for new identi-cal-mass particles "X" that are produced in pairs, with (resonant or without (non-resonant mode) a new intermedi-ate, heavier particle "Y" being produced and decaying to pairs of X. Such proresonances and four jets in the final state: the dijet mass would correspond to particle X and the four-jet mass to was also motivated to search for Y \rightarrow XX \rightarrow four

Fig. 1. Display of the highest mass event with a four-jet mass of 8 TeV, in which each pair of jets has a dijet mass of 1.9 TeV.

cesses would yield two dijet Fig. 2. Number of events observed (colour scale) within bins of the four-jet mass and the average mass of the two dijets. Purple ellipses show the 1 and 20 resolution contours, respectively, from a signal simulation of a four-jet resonance (Y), with a mass of 8.4 TeV, particle Y. The CMS experiment decaying to a pair of dijet resonances (XX), each with a mass of 2.1 TeV.

jets by a candidate event recorded in 2017, which was presented by a previous CMS search for dijet resonances (figure 1). This spectacular event has four high-transverse-momentum jets forming two dijet pairs, each with an invariant mass of 1.9 TeV and a fourjet invariant mass of 8 TeV.

The CMS collaboration recently found another very similar event in a new search optimised for this specific Y→ XX \rightarrow four-jet topology. These events could origi-nate from quantumchromodynamics processes, but those are expected to be extremely rare (figure 2). The two can-didate events are clearly visible at high masses and distinct from all the rest. Also shown in the figure (in purple) is a simulation of a possible new-physics signal - a diquark decaying to vector-like quarks - with a four-jet mass of 8.4 TeV and a dijet mass of 2.1 TeV, which very nicely describes these two candidates. The hypothesis that these events originate from the SM at the observed X and Y masses is disfavoured with a local significance of 3.90. Taking into account the full range of possible X and Y mass values, the compatibility of the observation with the SM expectation leads to a global

significance of 1.6 o.

The upcoming LHC Run 3 and future High-Luminosity LHC runs will be cru-cial in telling us whether these events are statistical fluctuations of the SM expectation, or the first signs of yet another groundbreaking discovery at the LHC.

Further reading

CMS Collab. 2022 CMS-PAS-EXO-21-010.

Search for resonant and non-resonant production of pairs of identical dijet resonances **EXO-21-010**

Data-driven search for pairs of dijet resonances in final states with at least four jets:

- Resonant: Two events on the tail of the distributions, with a four-jet mass of 8 TeV and an average dijet mass of 2 TeV. Local (Global) significance: 3.9 σ (1.6 σ)
- Non-resonant: Excess at average dijet mass of 0.95 TeV, Local (Global) significance: 3.6 σ (2.5 σ)

First ~ 30/fb (70/ fb) of Run 3 data could lead to "evidence" for resonant (nonresonant) signal at 8 TeV (1 TeV)

Beyond the Standard Model: Heavy Resonance

Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state **B2G-20-009**

- Using 2 large cone jets (resonance decay products), and 2 small cone jets (VBF tags)
- Tag the jets with ML algorithms to distinguish from QCD

2 excesses in VV decay modes only:

Local significant: 3.6 σ Global significance: 2.3 σ

Beyond the Standard Model

Search for a heavy composite Majorana neutrino EXO-20-011

Excited states of quarks and leptons with masses lower than compositeness scale with effective interactions via gauge or contact interactions

same sign leptons + Require 1 large cone jet (agnostic to the effective interactions). And fit on m(IIj)

Beyond the Standard Model - HNL

Search for Z' bosons decaying to pairs of heavy Majorana neutrinos <u>EXO-20-006</u>

LRSM: Z', $W_{R^{+/-}}$, N_{I}

Performed in electron and muon channels Probing both resolved and boosted topologies

Beyond the Standard Model - HNL

Probing Majorana neutrinos and the Weinberg operator in the same-charge dimuon channel through vector boson fusion processes **EXO-21-003**

TOTEM experiment is designed to take **precise measurements** of protons as they emerge from collisions **at small angles.**

This region is known as the '**forward**' direction and is **inaccessible**

TOTEM and CMS collaborations have coordinated the use of their detectors to perform combined measurements

the main measured variable is ξ -- fractional momentum loss of forward proton

CT-PPS is a magnetic spectrometer that uses the LHC magnets and detector stations, to bend protons to measure their trajectories. It is fully integrated into CMS DAQ + Reconstruction Software

- closure of event kinematics (full 13 TeV energy reconstructed)
- effective background rejection

Opportunity to access a variety of topics:

- anomalous couplings with high sensitivity
- new resonances in very clean final state
- rare SM processes

⁵A search for new physics in central exclusive production using Data 40 the missing mass technique with the CMS-TOTEM precision Signal shape ($pp \rightarrow p \mu \mu p$) proton spectrometer **EXO-19-009** 30 ε syst. (shift down) ε syst. (shift up) A generic search for production of a Z boson Z, γ or a photon with an additional unspecified massive particle X in proton-tagged events

technique at the LHC.

Excellent proton momentum reconstruction of PPS allows to search for missing mass signatures at high invariant mass

 $m^2_{
m miss}$

The Precision Proton Spectrometer of the CMS experiment collected more than 100 fb-1 of data in Run 2. Proton reconstruction with the CMS Precision Proton Spectrometer in Run 2 PRO-21-001

92.3 fb⁻ⁱ (13 TeV)

Main variable of interest is the so-called **missing mass**: first use of this

$$= \left[(P_{p_1}^{\text{in}} + P_{p_2}^{\text{in}}) - (P_V + P_{p_1}^{\text{out}} + P_{p_2}^{\text{out}}) \right]^2$$

TOP-21-007

Observed (expected) limit 0.59 pb (1.14 pb +1.2 - 0.6)

Conclusions

A lot of data, very sophisticated analysis strategies, many excesses :)

Something real?

A lot of analysis in pipeline based on Run 2 and many *new* ideas to explore in early Run 3

Back up

