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NEWS | 22 September 2022

AlphaFold developers win US$3-
million Breakthrough Prize

DeepMind’s system for predicting the 3D structure of proteins is among five recipients of
science’s most lucrative awards.

Zeeya Merali

y f =

Demis Hassabis (left) and John Jumper (right) from DeepMind developed AlphaFold, an Al that can

predict the structure of proteins. Credit: Breakthrough Prize
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Some have been used in hospitals, despite not being properly tested. But the
pandemic could help make medical Al better.

By Will Douglas Heaven
July 30,2021
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Hundreds of Al tools have been built to catch
covid. None of them helped.

Some have been used in hospitals, despite not being properly tested. But the
pandemic could help make medical Al better.

By Will Douglas Heaven
July 30,2021

Google medical
researchers humbled when
Al screening tool falls short
in real-life testing

Devin Coldewey @techcrunc h / 4:03 PM CDT « April 27, 2020 m Comment
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Leakage and the Reproducibility Crisis in ML-based Science

— MIT Technology Review Signin
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We take our models seriously

Alexander, Kaitlin, and Stephen M. Easterbrook. "The software architecture of climate
models: a graphical comparison of CMIP5 and EMICARS configurations." Geoscientific
Model Development 8.4 (2015): 1221-1232.
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O 100 200 300 400 500 600 700 800

size (thousands of lines of code)

We take our models seriously  Distribution shift is the point

Alexander, Kaitlin, and Stephen M. Easterbrook. "The software architecture of climate
models: a graphical comparison of CMIP5 and EMICARS configurations." Geoscientific
Model Development 8.4 (2015): 1221-1232.

Anomalous rate of precession of the perihelion of Mercury
https://en.wikipedia.org/wiki/Tests_of_general_relativity



Need to think carefully about baselines

Simple random search provides a competitive approach
to reinforcement learning

Horia Mania, Aurelia Guy Benjamin Recht

“A common belief In model-free reinforcement learning is that methods
based on random search In the parameter space of policies exhibit
significantly worse sample complexity than those that explore the space
of actions. We dispel such beliefs by introducing a random
search method for training static, linear policies for
continuous control problems, matching state-of-the-
art sample efficiency on the benchmark MujoCo

locomotion tasks.’

arXiv:1803.0/055v| March 2018
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Al for Inverse Problems

How can Al help us understand the data
that we get from existing systems
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“What model?” capture some aspect
of the system




How much do we believe our model?

Machine Learning Statistics Inverse Problems
X

-
iks tks
Fix) T ) op= L [ [ () - 220
o S S S
| d (Kirchhoff's diffraction formula)
Fix)+x @

“What model?” capture some aspect Irust completely
of the system
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WHY ARE INVERSE
PROBLEMS HARD!?

Inverse problems are hard for the samr

reasons that inverting a matrix I1s hard.

y = Ax + €

dentity! easy
not full rank? hard k(A)
poor condrtion number? hard

How to solve! Use prior knowledgel
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"deep learning" "inverse problem”
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Karol Gregor and Yann LeCun
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Image Super-Resolution Using Deep
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Lensless computational imaging through deep
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#fakenews

8 X 8 input 32 x 32 samples  ground truth

J ) CAN YOU
ENHANCE THAT

Pixel Recursive Super Resolution Figure 1: Illustration of our probabilistic pixel recursive
super resolution model trained end-to-end on a dataset of
celebrity faces. The left column shows 8 x 8 low resolution
inputs from the test set. The middle and last columns show

Ryan Dahl * Mohammad Norouzi Jonathon Shlens 32 x 32 images as predicted by our model vs. the ground
Googlc Brain truth. Our model incorporates strong face priors to synthe-

. S , s1ze realistic hair and skin details.
{rld,mncrouzi, shlens}@gocgle.com
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CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York
To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

“La Physique ne nous donne pas seulement
'occasion de résoudre des problemes . . ., elle nous
fait presentir la solution.” H. POINCARE.

Before I explain the title and introduce the theme of the lecture I should like
to state that my presentation will be more in the nature of a leisurely excursion
than of an organized tour. It will not be my purpose to reach a specified des-
tination at a scheduled time. Rather I should like to allow myself on many
occasions the luxury of stopping and looking around. So much effort is being
spent on streamlining mathematics and in rendering it more efficient, that a
solitary transgression against the trend could perhaps be forgiven.

American Mathematical Monthly 1966
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'occasion de résoudre des problemes . . ., elle nous
fait presentir la solution.” H. POINCARE.
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to state that my presentation will be more in the nature of a leisurely excursion
than of an organized tour. It will not be my purpose to reach a specified des-
tination at a scheduled time. Rather I should like to allow myself on many
occasions the luxury of stopping and looking around. So much effort is being
spent on streamlining mathematics and in rendering it more efficient, that a
solitary transgression against the trend could perhaps be forgiven.

American Mathematical Monthly 1966

In 1966, in a celebrated paper (Kac, 1966), Mark Kac for-
mulated the famous question “Can one hear the shape of
a drum?”. This provocative question is of course to be un-
derstood mathematically as follows: Is it possible to find
two (or more) non-isometric Euclidean simply connected
domains for which the sets {E,, || n € N} of solutions of
(1) with ¥ Boundary = 0 are identical? More broadly,

the question raises the issue of the inverse problem of
retrieving information about a drum from knowledge of
its spectral properties. As the spectroscopist A. Schuster
put it in an 1882 report to the British Association for
the Advancement of Science: ”To find out the different
tunes sent out by a vibrating system is a problem which
may or may not be solvable in certain special cases, but
it would baffle the most skillful mathematicians to solve
the inverse problem and to find out the shape of a bell by
means of the sounds which it is capable of sending out.
And this is the problem which ultimately spectroscopy
hopes to solve in the case of light. In the meantime
we must welcome with delight even the smallest step in
the desired direction.” (Mehra and Rechenberg, 2000).
Actually, it was known very early, from Weyl’s formula,
that one can “hear” the area of a drum and the length
of its perimeter (see section V.A, and (Vaa et al., 2005)
for a historical account of the problem). But could the
shape itself be retrieved from the spectrum? That is,
what kind of information on the geometry is it possible to
gather from the knowledge of the spectrum, for instance,
using semiclassical methods that allow investigation of
the quantum-classical correspondence?” And what kind
of sufficient conditions allow the geometry to be entirely
specified from the spectrum?




Is this invertable?

In 1966, in a celebrated paper (Kac, 1966), Mark Kac for-
mulated the famous question “Can one hear the shape of

a drum?”. This provocative question is of course to be un-
derstood mathematically as follows:

Is it possible to find

two (or more) non-isometric Euclidean simply connected
domains for which the sets {E,, || n € N} of solutions of

To

Before I e
to state that
than of an o1
tination at a
occasions the
spent on stre
solitary trans

American |

its spectral properties. As the spectroscopist A. Schuster
put it in an 1882 report to the British Association for
the Advancement of Science: ”To find out the different
tunes sent out by a vibrating system is a problem which
may or may not be solvable in certain special cases, but
it would baffle the most skillful mathematicians to solve
the inverse problem and to find out the shape of a bell by
means of the sounds which it is capable of sending out.
And this is the problem which ultimately spectroscopy
hopes to solve in the case of light. In the meantime

we must welcome with delight even the smallest step in
the desired direction.” (Mehra and Rechenberg, 2000).

cal? More broadly,

inverse problem of
| from knowledge of
bscopist A. Schuster
tish Association for
nd out the different
is a problem which
n special cases, but
1ematicians to solve
e shape of a bell by
able of sending out.
nately spectroscopy

In the meantime
the smallest step in
Rechenberg, 2000).
om Weyl’s formula;
rum and the length
d (Vaa et al., 2005)
em). But ceuld the
pectrum?/ That is,
letry is/t possible to
ctruzn, for instance,
ow investigation of

vre quanvun=ciassicar corresponuerce! And what kind
of sufficient conditions allow the geometry to be entirely

specified from the spectrum?



ENCHINEERED PSF FOR 30D 5 TS

Astigmatic Double Helix

Z (nm) / Andor iXon
EMCCD
N2
Q -900 nm
400 %
ObjeCtlve \ image plane
-500 nm
2l 30 W=
200 S AR
/ /
Cylindrical L1 0 nm
Lens 0
600 nm
Imaging —200
Lens
1400 nm
EMCCD > ’ ' :
-1000 -500 0 500 1000
z Position (nm)
Huang, B, Wang, W, Bates, M., & Zhuang, X. (2008). Three-Dimensional Super-Resolution Pavani, S.R. B, Thompson, M. A, Biteen, |. S, Lord, S. |, Liu, N., Twieg, R. |, ... Moerner W. E.
Imaging by Stochastic Optical Reconstruction Microscopy. Science, 319(5864), 810-81 3. http:// (2009). Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit
dol.org/ 0.1 126/science.| 153529 by using a double-helix point spread function. Proceedings of the National Academy of

Sciences of the United States of America, 106(9), 2995-2999. http://doi.org/10.1073/
pnas.0900245 106



LEARNING FROM SIMULATION



L EARNING FROM SIMULATION

{(wj,0;),---}

v



LEARNING FROM SIMULATION

)

v = wj,05), ]



L EARNING FROM SIMULATION

e B

v = wj,05), ]




LEARNING FROM SIMULATION

. . g Deep
FT = = [




LEARNING FROM SIMULATION

. . g Deep
FT = R [




LEARNING FROM SIMULATION

. . g Deep
FT = R [




LEARNING FROM SIMULATION

. . g Deep
FT = R [




2D COMPARISON
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ADCG: Alternating Descent Conditional Gradient

Boyd, Nicholas, Geoffrey Schiebinger, and Benjamin Recht. "The alternating descent conditional gradient method for
sparse inverse problems." SIAM Journal on Optimization 27,no.2 (2017):616-639.
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Solving Spectroscopic Inverse Problems

The forward problem

P L o
o4, S A B ' SR AT

- 2P

NH

C. H_NO

100 12" 2

HO

1Z

200 150

The inverse problem

(hard)

100

50




Beyond Images to Graphs



Beyond Images to Graphs




Beyond Images to Graphs




Beyond Images to Graph




Computational Measurement

How can we design new measurement systems
to be more interpretable / useful for Al?
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What is your query?

How many bits are you trying to extract from your system?

1-bit measurement

system

Is It possible to only
collect 170 kB of data?
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g Compressive Sensing

Low-cost, fast, sensitive ))

oplical detection
| M

Compressed, encoded
image data sent via RF

and random basis

(b)

[FIG2] Single-pixel photo album. (a) 256 x 256 conventional image of a black-and-white
R. (b) Single-pixel camera reconstructed image from M = 1, 300 random measurements
(50 x sub-Nyquist). (c) 256 x 256 pixel color reconstruction of a printout of the Mandrill
test image imaged in a low-light setting using a single photomultiplier tube sensor, RGB
color filters, and M = 6, 500 random measurements.



DiffuserCam

Single-shot 3D acquisition

Experimental setup Algorithm 3D Reconstruction

SCNSOTr
b — Hv||5
+A[[Pv|1

V = arg mi

02‘

Calibration

diffuser

Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller,
"DiffuserCam: lensless single-exposure 3D imaging," Optica 5, 1-9 (2018)
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Single-shot 3D acquisition

( .
Experimental setup Algorithm

~ -1 2
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+A [PV

Calibration %
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Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller,
"DiffuserCam: lensless single-exposure 3D imaging," Optica 5, 1-9 (2018)
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How can Al help?

\

ground truth

> loss
function

TA

dataset acquisition
system model

oty

lensed
camera

lensless
camera

\. / b = Hv - ——
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— model-based =7 w
L ) network \_ A,
2. operation 4‘265—’6] 2626

in the wild (measurements \/ \/reconstructions )
2 | | “’ “ ’
\_ Y. \_ Y.

<= backprop

Kristina Monakhova, Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos Yanny, and
Laura Waller, "Learned reconstructions for practical mask-based lensless imaging,”
Opt. Express 27, 28075-28090 (2019)

Inference

4 Lensed camera )
Lens components
0 | — classifier
S image
\ ’ y
4 Lensless camera N
sensor
reconstruction [ AT0 -
ﬁl — . 'o — classifier
\mask encoded pattern | )
a Proposed system )
sensor
- Transformer-
I based classifier
mask encoded pattern )

Xiuxi Pan, Xiao Chen, Tomoya Nakamura, and Masahiro Yamaguchi, "Incoherent reconstruction-free object recognition with
mask-based lensless optics and the Transformer,” Opt. Express 29, 37962-37978 (2021)




Active Learning

How can Al guide experimentation
and measurement?
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Measuring Receptive Fields

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

B,

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

06

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

A
Jo& -~

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

o

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Measuring Receptive Fields

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Active Learning Receptive Fields

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Active Learning Receptive Fields
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Active Learning Receptive Fields
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select stimulus experiment
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Active Learning Receptive Fields
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select stimulus experiment
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So why isn’t this used?

* Implementation is hard and complex!

» Passive-ALD
LY NG D |

angle difference in degree

# trials

B
Lewi-09 ALD1o ALD100
| 51.54 44.94
400 i,
trials ’
57.29 40.69 36.65

". )

1000

trials , , ”

43.34 35.90 28.98

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012



Active Learning Receptive Fields
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Active Learning Receptive Fields
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 Easier to just spend $3B and scale

up experiments
Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurlPS 2012
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How much Al progress is nhecessary?

“Existing algorithms
aren’t quite right”

Regression

“How can | sweet spoft for us

analyze my

data?” ML provides fundamentally new

capabilities but is “mostly there”
already

* Creative ideas beyond existing
work — rethinking what’s possible

* EXisting baselines so you
understand how much progress

can be made

Sentience

“Can you replace
my grad student?”



What is a robot?



What is a robot?




What is a robot?

KIVA WAREHOUSE ROBOT




What is a robot?

i e R

KIVA WAREHOUSE ROBOT

= 'S - = > e =
= 5 B = o e L :
ST e = = e =

BIG DOG FROM BOSTON D.



What is a robot?

N

W

KIVA WAREHOUSE ROBOT

DRONES



What is a robot?



What is a robot?

TELESCOPES



What is a robot?

TELESCOPES MR IMAGERS



What is a robot?

' avance m HD

B

SPECTROMETERS

TELESCOPES




What is a robot?

' avance m HD

TELESCOPES

CYTOMETERS



What is a robot?

TELESCOPES MR IMAGERS  SPECTROMETERS

CYTOMETERS ACCELERATORS



What is a robot?

Q
S
g
X

TELESCOPES

CYTOMETERS ACCELERATORS ...AND MORE




The future of Al + Measurement

Every scientific instrument Iis a robot and
can be smarter

Tremendous opportunities for
collaboration across U. Chicago and

National Labs

Getting people in the same room is just a 3
start — they have to speak each other’s ACCELERATORS

language!

THE UNIVERSITY OF

CHICAGO

Argonne° 2 Fermilab

NATIONAL LABORATORY



Extra Slides



Lack of automated analysis
Inhibits scientific advancement

Contemporary computational approaches for

spectral analysis are effectively library lookups
(thus can only find “known knowns”)

Yet there are >1069 possible small molecules!
(obviously impossible to build comprehensive libraries)

80% of human small metabolites Automated synthetic chemistry Quantum Sensing and other
are still unknown [1] and wet lab platforms are molecule sensing technigues
(even worse for other organisms) coming online are increasingly viable
Crude oil can have over 1,000,000 But how do we know what they Often have fundamentally different
unique compounds [2] and its made? Can’t close the loop if tradeoffs from classical instrumentation,
composition is still a mystery [3] you can’t measure the output resulting in tremendous data

interpretation challenges

[1] Dias, D., Jones, et. al. (2016). Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites, 6(4), 46.

[2] Beens, J., Blomberg, J., & Schoenmakers, P. J. (2000). Proper Tuning of Comprehensive Two-Dimensional Gas Chromatography (GCxGC) to Optimize the
Separation of Complex Oil Fractions. Journal of High Resolution Chromatography, 23(3), 182—-188.

[3] Panda, S. K., Andersson, J. T., & Schrader, W. (2009). Characterization of supercomplex crude oil mixtures: What is really in there? Angewandte Chemie -
International Edition, 48(10), 1788-1791.



Key insight:
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What is an inverse problem?

The forward problem

Linear, continuous inverse problems transformed
measurement in the latter half of the 20th century

sical properties,
unknowns and data

The inverse problem
hard




Molecular spectroscopy as an inverse problem
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easy-ish) Calculating the spectrum for a given structure

NH., o SCF/DFT solves the forward problem for many
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HO Calling this “easy” is a stretch — performance is cubic in the number

\ of atoms and many aspects of experimental setup (conformational
H H diversity, salvation, etc.) are still challenging.
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Molecular spectroscopy as an inverse problem

Calculating the spectrum for a given structure

SCF/DFT solves the forward problem for many

modalities of interest

Calling this “easy” is a stretch — performance is cubic in the number
of atoms and many aspects of experimental setup (conformational
diversity, salvation, etc.) are still challenging.

Deducing the structure for a given spectrum

This is incredibly challenging, a long-
standing open problem

Highly nonlinear forward model
Combinatorial solution space
Single correct structure!
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We’re developing Al techniques to solve this.

Physics-informed deep learning and graph
neural networks let us generate millions of
synthetic spectra for training data

Structured prediction via deep imitation
learning lets us learn to build molecules
consistent with observed spectra /O\

Deep latent variable models let us model /O /O\
and understand physical measurement /O\ O /O\
processes where ab initio techniquesfail. (O © O O

We’ve had early success in NMR and are moving
iINnto mass spec

VR

Fast model to simulate Computational forward

spectra: DFT accuracy in model still an open research
milliseconds Cha||enge!

Can predict correct structure
with high accuracy on a wide
variety of compounds from
1D 13C spectrum

Next big
challenge
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M th d I - We learn to build molecules from spectroscopic data
e O O Og |eS by first taking them apart

1SC 1H
Solution: build a fast approximation to the forward model
OS
coces - - that lets you generate 100 M synthetic spectra

TR IR (Bootstrapped from 30k experimental spectra)
i

[1] Jonas, Kuhn. Rapid prediction of NMR spectral properties with

Mean absolute prediction error (ppm) g antified uncertainty. Journal of Cheminformatics, 11(1): 2019.

Solution: Construct molecule incrementally — use deep imitation
learning to learn to place the next bond of a partial molecule [2]
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[2] Jonas, Deep Imitation learning for Molecular Inverse Problems, NeurlPS 2019
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quantified uncertainty. Journal of Cheminformatics, 11(1): 2019.
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2. Generating complete molecules is hard! Search iree qenerating candidate structures from
Solution: Construct molecule incrementally — use deep imitation observed spectrum using learned function
learning to learn to place the next bond of a partial molecule [2]
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2. Generating complete molecules is hard! e
Search tree generating candidate structures from
Solution: Construct molecule incrementally — use deep imitation observed spectrum using learned function
learning to learn to place the next bond of a partial molecule [2]
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(96% of the time on most-confident mols!)
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Three Phases

Real-time solution to
Inverse problem

Why start with commodity spectroscopic modalities like NMR and MS?

Reliable Ubiquitous Existing Platforms are

Existing Data

Hardware programmable
NMRShiftDB : S0k NMR exp At UChicago we have: Custom real-time pulse sequence
NIST-17 : 250k GC/EI-MS exp 7 NMR specrometers design via Bruker hardware
SDBS: 20k NMR exp (Bruker 400MHz+) MS HW enables .pl_fogrammgtic
8 MS instruments control over collision energies
MassBank: 50k LC-MS/MS exp (GC-EI/MS, QTOF, and peak selection for

incoming Thermo Orbitraps) fragmentation
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Developing new techniques for acquisition

Modern Al requires tons of data We are developing solutions to generate
massive gquantities of training data called
A modern MS machine can select a single “Shotgun spectrometry”

m/z before fragmentation — useful for

. 1. Generate a mixture of 10k molecules
complex mixtures

with maximal molecular weight diversity

Combinatorial Chemistry 2.Perform LC/MS/MS on the combined
mixture at each level

3. Train our new models on the resulting
lightly-separated mixtures — some
overlap will exist and that’s ok

Can potentially scale CombChem to 100k per batch

Generate 10k known reaction products
in a day for $5k



Research Plan

Fast model to simulate Prediction of scalar (J) Incorporation of solvent effects and
spectra: DFT accuracy for ~—————p | coupling, NOE, other P> | conformational diversity for
chemical shifts in milliseconds relaxation effects beyond-DFT accuracy of 1D 1H
"Jonas, Kuhn. Rapid prediction of NMR spectral properties with —
quantified uncertainty. Journal of Cheminformatics, 11(1): 2019. \ \
CorreCt structure with h|gh Complete structure from |ncorporation of real-time
probablllty from 1D 13C via e | 1T H 1D SpeCtra N estimation for automated selection

deep imitation learning challenging environments of optimal pulse sequence

e —
Jonas, Deep Imitation Learning for Molecular Inverse Problems,
Advances in Neural Information Processing Systems 2019

O Fast model to simulate novel Automatic discovery of

Q spectra using existing - | fragmentation pathways directly

O fragmentation heuristics for EI-MS from data (QTOF MS/MS)

p, O N

" ¢

7))

4o Recover correct structure of small Multi-collision-energy and retention Machine-learning-guided
E molecules (<32a) from EI-MS spectra |——®§ time -based recovery using learned J§—P data dependent acquisition

via deep imitation learning pathway for larger molecules for complex mixtures

Today Future



Self-driving spectrometers

Designing Algorithms, Software, and Systems to Measure Every Molecule

Making possible: By new Al techniques:

Structured prediction via

Deep Imitation Learning




