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Introduction and Problem Setup
Physics framework: semi-classical approximation

• Per-atom simulation of trajectories in atom 
interferometer

• Trajectories are solved using classical equations 
of motion

• Phase difference between interferometer arms 
is calculated using information from classical 
trajectories

• Phase probabilities used for probabilistic 
assignment to two ports

• Parameters used in simulation are for point source 
interferometry 

Simulator written (by Natasha and the Northwestern 
group) in Julia
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Let’s talk about phase
Three contributions to accumulated phase difference in this framework:

• Propagation phase: integral of Lagrangian over trajectories

• Separation phase: spatial separation between endpoints

• Laser phase: non-uniformities in laser => phase differences from atom-laser interaction (“laser wavefront 
aberration”)

All of these contribute to the fringes we observe when we measure the atom cloud.
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Fitting Laser Wavefront Aberration
The laser wavefront non-uniformity can be parametrized by some spatially dependent phase function

• This phase function has some form (Zernike polynomials, e.g.), and some corresponding set of parameters

Problem: given some real, measured data, we don’t know what the parameters are

• Using our simulator and the measured data, can we extract (fit) the form of the laser wavefront aberration?
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Aberration of form 

 
 
Unknown parameters   

: amplitude 

: spatial frequency
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Step 1: Make the Simulator Differentiable
Automatic differentiation (see, e.g., previous talks from Michael) provides a way to get exact gradients of simulation 
outputs with respect to simulation parameters

• This allows for the automatic tuning of simulation parameters via gradient descent to meet some target 
objective (e.g. minimize a loss function)

• This sort of parameter tuning is a very efficient and powerful way to fit simulation to data!
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Test: 
Directly fit total phase 
of single atom. 

Minimize 

 by 

adjusting value of  in 
laser wavefront (via 
gradient descent)

(ϕtarget − ϕguess)2

kx



Step 2: How do we construct a loss function?
Gradient descent allows us to easily optimize, but what exactly should we optimize?

• Measurement is a set of 2D camera images

• Ongoing work: 2D images => 3D density (see, e.g. https://arxiv.org/abs/2205.11480)

• Multi-view imaging may be crucial for extracting wavefront info!

• In the following, assume we have 3D information about final atom positions 
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Loss Function Ideas: Direct Comparison
Procedure:

• Simulate a bunch of trajectories with some set of parameters

• Construct an empirical density from those trajectories (e.g. bin space into voxels)

• Compare density to measured and adjust parameters to match measurement

Drawbacks:

• Simulator is per-atom => construction of density impacts result (voxel size, statistics etc)

• Voxel binning breaks differentiability => need some tricks, approximations to nicely optimize
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Towards an Atom Level Loss
Assume we know probability densities of initial position,  and velocity, .

• In our case: classical equations of motion preserve probabilities

•  for final position , velocity 

• The quantum mechanical piece comes in with the phase probability

• , where  refers to port 1 or 2

• Summary: we can write down the probability of a measured 3D position if we know the corresponding initial 
position and the phase

p(r0) p(v0)

p(rf , vf ) = p(r0) ⋅ p(v0) rf vf

pk(rf , vf ) = p(r0) ⋅ p(v0) ⋅ pk(ϕ(rf , vf )) k
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Timesteps A, C, E 
(before ports). 
Points transform 
along with 
distribution.  



Maximum Likelihood Fitting
How do we use these probability properties? One way:

• From final position and velocity ( , ), can use a combination of reverse and forward solves of equations of motion 
to get , ,  (for some given simulation parameters)

• We can then construct a likelihood, and maximize this likelihood by adjusting parameters via gradient descent

• We can further marginalize over final velocities (e.g. with the help of neural networks), to do this procedure given 
only a measured set of final positions (similar to realistic case) — results below

rf vf
r0 v0 ϕ
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Summary
We have:

• Built a Julia simulator for atoms in our atom interferometry system using a semi-classical approximation

• Made this simulator differentiable, allowing for automatic calculation of gradients of simulation outputs with 
respect to parameters

• Demonstrated a maximum likelihood fit of laser wavefront parameters with gradient descent using only 
measured final atomic positions

Next steps:

• Expanded fits: other methods, more complicated aberrations

• Improvements to simulator: optimized laser pulses

• Longer term: Incorporate measurement system/2D image → 3D density models
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