Abstract

A new Proton Accumulator Ring is being proposed as a future upgrade to the Fermilab Complex for new physics experiments. This ring will extract the beam from the Linear accelerator at 0.8 GeV and then inject into the PIP-II Booster ring, enabling a 0.8 - 1.0 GeV upgrade. While studying the beam optics of the current Booster ring, a preliminary lattice design of the Proton Accumulator Ring was transcribed from an older version of Methodical Accelerator Design to a more recent version (MAD-X). A successful translation of the ring optics is verified by a comparison of the twiss outputs between both versions of the program.

Background

Figure 1. Idealized Booster Lattice Cell.

Figure 2. Booster Cell Twiss Plot.

- The Courant-Snyder parameters β_x and β_y are determined by the optics of the ring.
- *Focusing* magnets focus horizontally, while *Defocusing* magnets focus vertically.

Courant-Snyder Parameter β

• The amplitude of a particle's oscillation is described by the beta function, $\beta(s)$.

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi_x(s) + \phi)$$

• $\beta_x^{1/2}$ and $\beta_y^{1/2}$ are proportional to the beam size in the transverse planes [1].

Accumulator Ring Beam Optics

Jorge J. Soto¹

¹Chabot College

Booster Ring Twiss

Figure 3. Booster Ring Twiss Plot.

• The Booster Ring consists of a unique cell (Fig. 2) repeated 24 times (Fig. 3).

Particle Tracking

Analysis of the beam aperture and trajectory is done through MAD-X tracking. A program written in MATLAB takes output values from MAD-X tracking file and plots them in phase-space. The stability of the beam can then be verified throughout the lattice of the ring.

Figure 4. Booster Tracking Phase-Space.

• Here, 100 particles were tracked through the Booster Ring and plotted for 24 turns (Fig. 4).

In phase-space, particles move in an elliptical orbit through a number of turns. This verifies where particles are being lost and also determines the aperture required to build a ring without leading to collisions.

(1)

John A. Johnstone² Jeffrey Eldred²

²Fermilab

Tune describes the number of betatron oscillations per beam revolution. It is also equivalent to the phase advance, $\psi(s)$, around one orbit.

Resonances

Tune values must be chosen carefully because certain values, such as integer values ($\nu = 1, 2,$ 3, ...) and half integer values can cause betatron resonance, leading to beam loss [1].

The Proton Accumulator Ring lattice (Fig. 5) was successfully converted from MAD-8 to MAD-X. Comparison of maximum twiss values and tunes (Table 1) demonstrate successful conversion.

ð

Figure 5. Proton Accumulator Ring Twiss Plot.

Acknowledgements and References

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

[1] Dennis Barak et al. Concepts rookie book. Accelerator Division - Fermilab Opterations Department, 2020.

Fermilab

Tune

$$\nu = \frac{1}{2\pi} \oint \frac{1}{\beta(s)}, ds \tag{2}$$

Lattice File Conversion

Values	
β_x ,max	18.72 m
β_y ,max	18.80 m
$ u_x$	13.08
$ u_y$	13.95

Table 1. Proton Accumulator Ring Twiss and Tunes.