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The prediction problem

Setting:
e Training data (X1, Y1), ..., (Xa, Ya), test point (Xo11, Yai1)

observed want to predict

o If fitted model 11, overfits to training data,

n

~ 1 ~
|Yn+1 - /Ln(Xn+1)| > ; Z |\/1 - ,Ufn(Xl)|
i=1

even if training & test data are from the same distribution
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The prediction problem

Run algorithm A on the training data ~~ fitted model i,

Prediction interval for Y, 1:

6,,(X,,+1) = [in(Xss1) £ (margin of error)

N\

Use training residuals? (“naive”)
Use a parametric model?
Use smoothness assumptions?

Use cross-validation?
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The prediction problem

e Want to be distribution-free —

IP’{Y”H € 6n(Xn+1)} >1—a wjo assumptions on data distrib.

e Want to be efficient — minimize width of interval 6H(Xn+1)
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The prediction problem

Outline:

1. Background: conformal prediction
2. The jackknife+ and jackknife4-after-bootstrap

3. Some extensions
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Using a holdout set

e Using any algorithm, fit model
//’Zn/2 = -A((le Y1)7 ceey (Xn/27 Yn/2))
e Compute holdout residuals

Ri=|Yi—Hnp2(Xi)l, i=n/24+1,...,n

e Prediction interval:

~

Co(Xng1) = Bnp2(Xng1) £ (the (1 — a)-quantile of R, /241, ...

6/32



Conformal prediction

Background on the conformal prediction framework:

key idea = statistical inference via exchangeability of the data

Learning by Transduction

A. Gammerman, V. Vovk, V. Vapnik
Department of Computer Science

Royal Holloway, University of London
20 0EX, UK

‘gham, )
{alex,vovk, viadinir) Odca. rhbnc. ac.uk

Gammerman, Vovk, Vapnik
UAI 1998

Vovk, Gammerman, Shafer
2005 — see alrw.net

Distribution-Free Predictive Inference for Regression

Lei, G'Sell, Rinaldo,
Tibshirani, Wasserman
JASA 2018
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Split conformal prediction

Split conformal prediction interval (a.k.a. holdout):*

~

Co(Xnt1) = Hnj2(Xnt1) £ él—a{Rn/2+1a-~-aRn}
7\

the [(1 — a)(n/2 + 1)]-th smallest value in the list

Theorem:

If (X1, Y1)y .-y (Xny Ya), (Xnt1, Yar1) are exchangeable (e.g., i.i.d.),
then for any algorithm A, the split conformal method satisfies

]P{Yn+1 € 6,,(X,,+1)} >1-a.

Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Split conformal prediction

Exchangeability:
Random variables 73, ..., Z,, are exchangeable if, for any permutation o,

d
(Z1,-- -3 Zm) =(Zo1)s -+ > Zo(m))

the distributions are equal
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Split conformal prediction

Exchangeability:
Random variables 73, ..., Z,, are exchangeable if, for any permutation o,

d
v Zm) =(Zs)s -+ s Zo(m))

the distributions are equal

(Z1,...

For prediction:
Assume exchangeability of the pairs (X1, Y1),..., (Xn, Ya), (Xos1, Yat1)

Examples:
e (X, Y:)'s are drawn i.i.d. from any distribution

e (X;, Y:)'s sampled uniformly without replacement from a fixed set
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The nonconformity score

In the above construction,

6,,(X,,+1) = (Xp+1) £[...] ={ all y values with |y — a(X,1)| <[...] }

2Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

3Lei et al 2018, Distribution-Free Predictive Inference for Regression

*Romano et al 2019, Conformalized quantile regression

®Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators
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The nonconformity score

In the above construction,

6,,(X,,+1) = (Xp+1) £[...] ={ all y values with |y — a(X,1)| <[...] }

Generalize to any score §(x,y) measuring “nonconformity” of (x, y):
Co(Xns1) = { all y values with 5(Xpe1,y) <[..] }
Can choose S to...
e Adapt to nonconstant variance®
e Use quantile regression® or density estimation®
e Handle a categorical response®

e & many more

2Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

3Lei et al 2018, Distribution-Free Predictive Inference for Regression

“Romano et al 2019, Conformalized quantile regression

®Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators

10/32
SRomano et al 2020, Classification with Valid and Adaptive Coverage /



Full conformal prediction

Full conformal prediction:” distrib.-free guarantee w/o sample splitting

"Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Full conformal prediction:” distrib.-free guarantee w/o sample splitting

e Fit model to training + test data
//Zn+1 = A((X17 Yl); sy (Xm Yn)? (X"+17 Yni1 ))

e Compute residuals

Ri = |Yi — fins1(Xi)| for i < n; Roy1 = | Yor1 — finr1(Xota)]

Check if Rp11 < (the (1 — @) quantile of Ry,..., Ry, R,,+1)
7\

If data points are exchangeable, and A treats data points symmetrically,

then Ry, ..., R,11 are exchangeable

= this event has > 1 — «a probability

"Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Full conformal prediction:” distrib.-free guarantee w/o sample splitting

e Fit model to training + test data y
ﬁn+1 = -A((XI, Yl), ceey (Xn, Yn)a (Xn+17}Y/z‘{74/))

e Compute residuals

y
Ri = |Yi — L1 (X0)| for i < n; Rov1 = | M — Bins1(Xns1)]

Check if Rp11 < (the (1 — @) quantile of Ry,..., Ry, R,,+1)
7\

If data points are exchangeable, and A treats data points symmetrically,

then Ry, ..., R,11 are exchangeable

= this event has > 1 — « probability if we plugin y = Yn41

"Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Full conformal prediction:” distrib.-free guarantee w/o sample splitting

e Fit model to training + test data v
l//\/n+1 = A((Xh Y1)7 °co0o0g (Xm Yn)a (Xn+17M/z‘{7’4/))

e Compute residuals

y
Ri = |Yi — L1 (X0)| for i < n; Rov1 = | M — Bins1(Xns1)]

Check if Rp11 < (the (1 — @) quantile of Ry,..., Ry, R,,+1)
7\

If data points are exchangeable, and A treats data points symmetrically,

then Ry, ..., R,11 are exchangeable

= this event has > 1 — « probability if we plug in y = Ys1

EH(X,,H) = {all y € R for which the event above holds}

"Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Validity guarantee for full conformal:®

Theorem:

If (X1, Y1), -5 (Xny Ya), (Xns1, Yar1) are exchangeable (e.g., i.i.d.),
and the algorithm A treats data points symmetrically, then full CP satisfies

P{Y,,+1 € En(xnﬂ)} >1-a.

8\lovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal: computational challenges

Full conformal prediction requires that the algorithm A is re-run:

e For each test value X1 of interest

e For every possible value of Y, ;1 (e.g, all y € R)

Approaches:

e In practice — restrict to a grid of y values (but no theory)
e Specialized methods for specific algorithms e.g. Lasso’

e Discretized CP — use a discretized version of A
to restore theoretical guarantees'®

9Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

©Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Jackknife-+

2. The jackknife+ and jackknife4-after-bootstrap

Collaborators:

A

[ &

k'

£

Emmanuel Candés  Aaditya Ramdas  Ryan Tibshirani Byol Kim Chen Xu

Jackknife+ Jackknife-+-after-bootstrap
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Jackknife-+

Computational/statistical tradeoff:

# calls to A Sample size for training
Split conformal (a.k.a. holdout) 1 n/2
Full conformal 0 n

Can cross-validation type methods offer a compromise?
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Jackknife-+

Jackknife a.k.a. leave-one-out cross-validation:

Co(Xni1) = Fin(Xns1) = Qu_af{R1, ..., Ry}

where R; = |Y; — i_;(X;)| = leave-one-out residual

trained on data points {1, ..., n}\{i}

e No distribution-free guarantees

e Predictive coverage holds assuming algorithmic stability:*

ﬁn(XnJrl) o ﬁ—i(Xn+1)

Steinberger & Leeb 2018
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Jackknife-+

ﬁn(XnH) R

ﬁn(XnH) R

ﬁn(Xn+1) +R;

//Zn(XnJrl) == Rn

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¢

Co(Xny1) for jackknife
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Jackknife-+

An(Xny1) £ Ry Ao1(Xog1) £ R

* ek ot i
i fn(Xnp1) £ R2 i i fA2(Xor1) £ R2 .

| Hn(Xnt1) £ Rs ! Aa(Xns1) £ Ry |

3 //In(xn+1) + Rn 3 3 H— (XrH»l) == Rn 3

. . o :

Co(Xy11) for jackknife Cp(Xp11) for jackknife+
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Jackknife-+

Jackknife4-:12

Co(Xns1) = [Qa{ﬁfi(xnjtl) - Ri}, Qlfa{ﬁfi(xmkl) + Ri}}

e CV+ = extension to K-fold cross-validation

e Closely related to the cross-conformal method®

2B Candes, Ramdas, Tibshirani 2019, Predictive inference with the Jjackknife+
3Vovk 2015, Vovk et al 2018
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Theory for jackknife+

Theorem:

If (X1, Y1), .-y (Xny Ya), (Xnt1, Yar1) are exchangeable (e.g., i.i.d.),
and A treats data points symmetrically, then jackknife+ satisfies

IP{Y,,H e 6n(xn+1)} >1—2a.

e In practice, typically see ~ 1 — o coverage

e Can prove 2 1 — « coverage if assume A is stable
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Simulation

e n=100, d € {5,10,...,200}

o X; U N(0,1), Y= XT5+N(0,1)

e A = “ridgeless’ regression (least sq. with min ¢, norm)
Stable if d < n or d > n, but if d &~ n then unstable!*

50 — naive
0.8 —— jackknife
I 40 —— jackknife+
%0'6 —— naive E 30
o —— jackknife g
> . .
S 0.4 —— jackknife+ 820
5
0.2 10
0.0 0
0 50 100 150 200 0 50 100 150 200
Dimension d Dimension d

M Hastie et al 2019, Ridgeless Least Squares Interpolation.
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Jackknife+-after-bootstrap

Suppose we would like to use an algorithm Aeps
that is constructed with bootstrapping/subsampling:

e Forb=1,...,B,

— Subsample/bootstrap new training set Sp C {1,...n} of size m
— Fit model i) on data set Sp, using Apase

e Then predict with aggregation:
Ao (Xo11) = 0 (BD(Xns1), -, BB (Xos1))

(E.g., ¢ is the mean / median / trimmed mean)
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Jackknife+-after-bootstrap

The problem:

e Cost of Aens: B calls to Apase

e Cost of jackknife+ for Aens: Bn calls to Apase
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Jackknife+-after-bootstrap

The J+aB algorithm:'®

e Forb=1,...,B,

— Subsample/bootstrap new training set S, C {1,...n} of size m
— Fit model i) on data set Sp, using Apase

e Compute leave-one-out models & out-of-bag residuals:
Aoni() = (AP (Xo1) 11 € S5)s Ri= 1Yi = Bipyi(X)]
e Prediction interval:

Co(Xns1) = [ﬁa (M@\;(Xnﬂ) = Ri)7 Qi (u¢\i(Xn+1) + Ri)}

Kim, Xu, B. 2020, Predictive Inference Is Free with the Jackknife+-after-Bootstrap
(Related ideas in the literature: Zhang et al, Devetyarov & Nouretdinov, L&fstrom et al, Bostrom et al, Linusson et al)
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Jackknife+-after-bootstrap

e Cost of Aens: B calls to Apase
e Cost of jackknife+ for Aens: Bn calls to Apase

e Cost of jackknife+-after-bootstrap on Apase: B calls to Apase

(Assuming model fitting is the dominant cost — not aggregation / evaluation)
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Jackknife+-after-bootstrap

Theorem:
For any distrib. P & any Apase, jack+-after-bootstrap satisfies

IP’{Y,,H e 5,,(Xn+1)} >1—2a
if the # of ensembled models is a random B ~ Binomial(B, 8) with

m
) (1 — ﬁ) ., for bootstrapped samples of size m,

m .
== for subsamples of size m
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Extensions

Outline:

1. Background: conformal prediction
2. The jackknife+ and jackknife+-after-bootstrap

3. Some extensions
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Nonexchangeable conformal prediction (nexCP)

Theory for full conformal relies on:

1. (X1, Y1),y (Xay Ya), (Xnt1, Yar1) are exchangeable (e.g., i.i.d.)

2. Regression algorithm A treats input data points symmetrically
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Nonexchangeable conformal prediction (nexCP)

Theory for full conformal relies on:

1. (X1, Y1),y (Xay Ya), (Xnt1, Yar1) are exchangeable (e.g., i.i.d.)

2. Regression algorithm A treats input data points symmetrically

Challenges in practice:

1. (X1, Y1), o, (Xny Ya), (Xnt1, Yar1) may be nonexchangeable
(e.g., distribution drift, dependence over time, ...)

2. May want to choose A that treats data nonsymmetrically
(e.g., weighted regression, autoregressive model, ...)
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Nonexchangeable conformal prediction (nexCP)

The method:'°® draw a random index K with P{K = i} = w;, then:

e Fit model to training + test data
ﬁn+1 = .A((Xl, Yl), ey (Xn+1, y), ey (Xn, Y,,), (XK, YK))
——
in position K
e Compute residuals
Ri = |Yi = fin+1(Xi)| for i < n; Rov1 = |y — fins1(Xns1)|

e Check if Ryp1 < (the (1 — «) quantile of {R; with weight W,-})
Al

fixed weights w; > 0 with >~ w; =1

6H(Xn+1) = {all y € R for which the above holds}

28/32
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Nonexchangeable conformal prediction (nexCP)

The method:'® draw a random index K with P{K = i} = w;, then:

e Fit model to training + test data
ﬁn+1 = A((Xl, Yl), ey (Xn+1,y), ey (X,,, Y,,), (XK, YK))
——
in position K
e Compute residuals
Ri = |Yi = fin+1(Xi)| for i < n; Rov1 = |y — fins1(Xns1)|

e Check if Ryp1 < (the (1 — «) quantile of {R; with weight W,-})
Al

fixed weights w; > 0 with >~ w; =1

6,,(X,,+1) = {all y € R for which the above holds}

e If data is i.i.d. or exchangeable, coverage > 1 — «

e |f exchangeability is violated, control loss of coverage
by choosing w; to be low for “risky” data points (e.g., old data)

28/32
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Other definitions of risk

Conformal prediction methods bound
P {Yos1 # C:0%i2)} = B[ 10V # G}

zero-one loss

Can use a conformal approach to control other definitions of risk.!”

Examples:
e FDR for flagging out-of-distribution data points

e False pos./neg. rates if Y = a set of labels

e Accuracy rate for selecting pixels within an image

" Angelopolous et al 2021, Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
8Bates et al 2021, Distribution-Free, Risk-Controlling Prediction Sets
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The streaming setting

Conformal prediction can also be applied to an online setting:

e If data points are iid,
conformal p-values are valid (and L) at each time ¢t

= can use conformal to predict / to test for changepoints®®
e Can bound cumulative error under arbitrary distribution drift??:>!

e |f data points form a time series,
CP achieves asymptotic coverage under some assumptions®”

9\/ovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
2Gibbs & Candes 2021, Adaptive conformal inference under distribution shift
2lFeldman et al 2022, Conformalized Online Learning: Online Calibration Without a Holdout Set

2Xu & Xie 2021, Conformal prediction interval for dynamic time-series
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Weighted conformal prediction

The covariate shift setting:

e Marginal distribution of X is different in training vs. test data
(e.g., some groups are under-represented in training data)

e But, distribution of Y|X is the same

e If the shift is = known, can apply weighted conformal prediction’®

B Tibshirani, B., Ramdas, & Candés 2019, Conformal prediction under covariate shift

2 Candgs, Lei, Ren 2021, Conformalized survival analysis

% Lei & Candes 2020, Conformal inference of counterfactuals and individual treatment effects
B Fannjiang et al 2022, Conformal prediction for the design problem

2"Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift 31/32



Weighted conformal prediction

The covariate shift setting:

e Marginal distribution of X is different in training vs. test data
(e.g., some groups are under-represented in training data)

e But, distribution of Y|X is the same

e If the shift is = known, can apply weighted conformal prediction’®
Applications:

e Survival analysis & censored data®*

Estimating individual treatment effects®®

Prediction in the design problem (active learning)?®

A related problem — label shift (for categorical Y / classification)®’

B Tibshirani, B., Ramdas, & Candés 2019, Conformal prediction under covariate shift
2*Candes, Lei, Ren 2021, Conformalized survival analysis

% Lei & Candes 2020, Conformal inference of counterfactuals and individual treatment effects
B Fannjiang et al 2022, Conformal prediction for the design problem

2"Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift 31/32



Thank you!

Website:
http://rinafb.github.io/
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