Quantifying predictive uncertainty with conformal inference

Rina Foygel Barber

http://rinafb.github.io/

Setting:

- Training data $(X_1, Y_1), \dots, (X_n, Y_n)$, test point (X_{n+1}, Y_{n+1})
- If fitted model $\widehat{\mu}_n$ overfits to training data,

$$|Y_{n+1} - \widehat{\mu}_n(X_{n+1})| \gg \frac{1}{n} \sum_{i=1}^n |Y_i - \widehat{\mu}_n(X_i)|$$

even if training & test data are from the same distribution

Run algorithm \mathcal{A} on the training data \rightsquigarrow fitted model $\hat{\mu}_n$ Prediction interval for Y_{n+1} :

 $\widehat{C}_n(X_{n+1}) = \widehat{\mu}_n(X_{n+1}) \pm (\text{margin of error})$

Use training residuals? ("naive") Use a parametric model? Use smoothness assumptions? Use cross-validation?

- Want to be <u>distribution-free</u> $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \ge 1 - \alpha \quad \text{w/o assumptions on data distrib.}$
- Want to be <u>efficient</u> minimize width of interval $\widehat{C}_n(X_{n+1})$

Outline:

- 1. Background: conformal prediction
- 2. The jackknife+ and jackknife+-after-bootstrap
- 3. Some extensions

• Using any algorithm, fit model

$$\widehat{\mu}_{n/2} = \mathcal{A}\Big((X_1, Y_1), \dots, (X_{n/2}, Y_{n/2})\Big)$$

• Compute holdout residuals

$$R_i = |Y_i - \widehat{\mu}_{n/2}(X_i)|, \quad i = n/2 + 1, \ldots, n$$

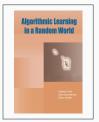
• Prediction interval:

$$\widehat{\mathcal{C}}_n(X_{n+1}) \,=\, \widehat{\mu}_{n/2}(X_{n+1}) \,\pm\, ig(ext{the } (1-lpha) ext{-quantile of } R_{n/2+1},\dots,R_nig)$$

Background on the conformal prediction framework:

key idea = statistical inference via exchangeability of the data

Gammerman, Vovk, Vapnik UAI 1998



Vovk, Gammerman, Shafer 2005 — see alrw.net

208, VOL 713, VOL 121, UHA 111, Theory and Methods. https://doi.org/10.1000/001101.2017102116	Taylor & Franci
	Osotrante
Distribution-Free Predictive Inference for Regression	
Jing Lei O, Max G'Sell, Alessandro Rinaldo, Ryan J. Tibshisani/O, and Larry Wasserman	
Department of Statistics, Camegie Niellan University, Pittaburgh, PA	
Version 2	Revent Howary 207 Revent Howary 207 Distribution free Math Endower Section Free Math Intel Segments Withdow Imperators

Lei, G'Sell, Rinaldo, Tibshirani, Wasserman JASA 2018 Split conformal prediction interval (a.k.a. holdout):¹

$$\widehat{\mathcal{C}}_n(X_{n+1}) = \widehat{\mu}_{n/2}(X_{n+1}) \pm \widehat{\mathsf{Q}}_{1-\alpha} \Big\{ R_{n/2+1}, \dots, R_n \Big\}$$

the $\lceil (1-\alpha)(n/2+1)\rceil$ -th smallest value in the list

Theorem:

If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.), then for any algorithm \mathcal{A} , the split conformal method satisfies

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

¹Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Exchangeability:

Random variables Z_1, \ldots, Z_m are *exchangeable* if, for any permutation σ ,

$$(Z_1, \ldots, Z_m) \stackrel{d}{=} (Z_{\sigma(1)}, \ldots, Z_{\sigma(m)})$$

the distributions are

equal

Exchangeability:

Random variables Z_1, \ldots, Z_m are *exchangeable* if, for any permutation σ ,

$$(Z_1, \ldots, Z_m) \stackrel{d}{=} (Z_{\sigma(1)}, \ldots, Z_{\sigma(m)})$$

the distributions are equal

For prediction:

Assume exchangeability of the *pairs* $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ Examples:

- (X_i, Y_i) 's are *drawn i.i.d.* from any distribution
- (X_i, Y_i) 's sampled uniformly without replacement from a fixed set

The nonconformity score

In the above construction,

 $\widehat{\mathcal{C}}_n(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm [\dots] = \{ \text{ all } y \text{ values with } |y - \widehat{\mu}(X_{n+1})| \leq [\dots] \}$

²Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

³Lei et al 2018, Distribution-Free Predictive Inference for Regression

⁴Romano et al 2019, Conformalized quantile regression

⁵Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators

⁶Romano et al 2020, Classification with Valid and Adaptive Coverage

In the above construction,

 $\widehat{\mathcal{C}}_n(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm [\dots] = \{ \text{ all } y \text{ values with } |y - \widehat{\mu}(X_{n+1})| \leq [\dots] \}$

Generalize to any score $\widehat{S}(x, y)$ measuring "nonconformity" of (x, y):² $\widehat{C}_n(X_{n+1}) = \{ \text{ all } y \text{ values with } \widehat{S}(X_{n+1}, y) \leq [...] \}$

Can choose \widehat{S} to...

- Adapt to nonconstant variance³
- Use quantile regression⁴ or density estimation⁵
- Handle a categorical response⁶
- & many more

²Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

³Lei et al 2018, Distribution-Free Predictive Inference for Regression

⁴Romano et al 2019, Conformalized quantile regression

⁵Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators

⁶Romano et al 2020, Classification with Valid and Adaptive Coverage

Full conformal prediction:⁷ distrib.-free guarantee w/o sample splitting

⁷Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Full conformal prediction:⁷ distrib.-free guarantee w/o sample splitting

• Fit model to training + test data

$$\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$$

• Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)|$$
 for $i \le n$; $R_{n+1} = |Y_{n+1} - \widehat{\mu}_{n+1}(X_{n+1})|$

• Check if $R_{n+1} \leq ($ the $(1 - \alpha)$ quantile of $R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and \mathcal{A} treats data points symmetrically, then R_1, \ldots, R_{n+1} are exchangeable \Rightarrow this event has $\geq 1 - \alpha$ probability

K

⁷Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Full conformal prediction:⁷ distrib.-free guarantee w/o sample splitting

- Fit model to training + test data $\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$
- Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)|$$
 for $i \le n$; $R_{n+1} = |Y_n/4/2 - \widehat{\mu}_{n+1}(X_{n+1})|$

• Check if $R_{n+1} \leq ($ the $(1 - \alpha)$ quantile of $R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and A treats data points symmetrically, then R_1, \ldots, R_{n+1} are exchangeable \Rightarrow this event has $\geq 1 - \alpha$ probability if we plug in $y = Y_{n+1}$

K

⁷Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Full conformal prediction:⁷ distrib.-free guarantee w/o sample splitting

- Fit model to training + test data $\widehat{\mu}_{n+1} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$
- Compute residuals

$$R_i = |Y_i - \widehat{\mu}_{n+1}(X_i)|$$
 for $i \le n$; $R_{n+1} = |Y_n/4/2 - \widehat{\mu}_{n+1}(X_{n+1})|$

• Check if $R_{n+1} \leq ($ the $(1 - \alpha)$ quantile of $R_1, \ldots, R_n, R_{n+1})$

If data points are exchangeable, and A treats data points symmetrically, then R_1, \ldots, R_{n+1} are exchangeable \Rightarrow this event has $\geq 1 - \alpha$ probability if we plug in $y = Y_{n+1}$

 $\widehat{C}_n(X_{n+1}) = \{ all \ y \in \mathbb{R} \text{ for which the event above holds} \}$

⁷Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

K

Validity guarantee for full conformal:8

Theorem:

If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.), and the algorithm \mathcal{A} treats data points symmetrically, then full CP satisfies

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

⁸Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

Full conformal: computational challenges

Full conformal prediction requires that the algorithm $\ensuremath{\mathcal{A}}$ is re-run:

- For each test value X_{n+1} of interest
- For every possible value of Y_{n+1} (e.g, all $y \in \mathbb{R}$)

Approaches:

- In practice restrict to a grid of y values (but no theory)
- Specialized methods for specific algorithms e.g. Lasso⁹
- Discretized CP use a discretized version of ${\cal A}$ to restore theoretical guarantees 10

⁹Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

¹⁰Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference

Outline:

- 1. Background: conformal prediction
- 2. The jackknife+ and jackknife+-after-bootstrap
- 3. Some extensions

Collaborators:

Computational/statistical tradeoff:

	$\#$ calls to ${\cal A}$	Sample size for training
Split conformal (a.k.a. holdout)	1	n/2
Full conformal	∞	п

Can cross-validation type methods offer a compromise?

W

Jackknife a.k.a. leave-one-out cross-validation:

$$\widehat{C}_{n}(X_{n+1}) = \widehat{\mu}_{n}(X_{n+1}) \pm \widehat{Q}_{1-\alpha}\{R_{1}, \dots, R_{n}\}$$

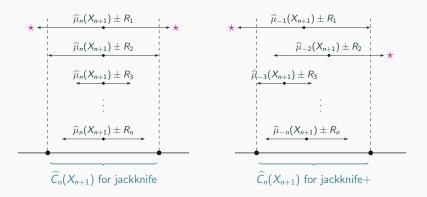
where $R_{i} = |Y_{i} - \widehat{\mu}_{-i}(X_{i})|$ = leave-one-out residual
trained on data points $\{1, \dots, n\} \setminus \{i\}$

- No distribution-free guarantees
- Predictive coverage holds assuming algorithmic stability:¹¹

 $\widehat{\mu}_n(X_{n+1}) \approx \widehat{\mu}_{-i}(X_{n+1})$

¹¹Steinberger & Leeb 2018

17/32



Jackknife+:12

$$\widehat{C}_n(X_{n+1}) = \left[\widehat{\mathsf{Q}}_{\alpha}\left\{\widehat{\mu}_{-i}(X_{n+1}) - R_i\right\}, \ \widehat{\mathsf{Q}}_{1-\alpha}\left\{\widehat{\mu}_{-i}(X_{n+1}) + R_i\right\}\right]$$

- CV+ = extension to *K*-fold cross-validation
- Closely related to the cross-conformal method¹³

 $^{^{12}}$ B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+ 13 Vovk 2015, Vovk et al 2018

Theorem:

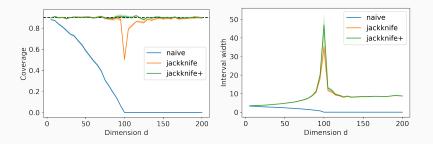
If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.), and A treats data points symmetrically, then jackknife+ satisfies

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-2\alpha.$$

- In practice, typically see $\approx 1-\alpha$ coverage
- Can prove $\gtrsim 1-\alpha$ coverage if assume ${\mathcal A}$ is stable

Simulation

- $n = 100, d \in \{5, 10, \dots, 200\}$
- $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1), \quad Y_i = X_i^\top \beta + \mathcal{N}(0,1)$
- A = "ridgeless" regression (least sq. with min ℓ₂ norm)
 Stable if d ≪ n or d ≫ n, but if d ≈ n then unstable¹⁴



¹⁴Hastie et al 2019, Ridgeless Least Squares Interpolation.

Suppose we would like to use an algorithm \mathcal{A}_{ens} that is constructed with bootstrapping/subsampling:

- For b = 1, ..., B,
 - Subsample/bootstrap new training set $S_b \subset \{1, \dots n\}$ of size m
 - Fit model $\widehat{\mu}^{(b)}$ on data set S_b using $\mathcal{A}_{\mathsf{base}}$
- Then predict with aggregation:

$$\widehat{\mu}_{\varphi}(X_{n+1}) = \varphi\left(\widehat{\mu}^{(1)}(X_{n+1}), \dots, \widehat{\mu}^{(B)}(X_{n+1})\right)$$

(E.g., φ is the mean / median / trimmed mean)

The problem:

- Cost of \mathcal{A}_{ens} : *B* calls to \mathcal{A}_{base}
- Cost of jackknife+ for \mathcal{A}_{ens} : Bn calls to \mathcal{A}_{base}

The J+aB algorithm:¹⁵

- For b = 1, ..., B,
 - Subsample/bootstrap new training set $S_b \subset \{1, \dots n\}$ of size m
 - Fit model $\widehat{\mu}^{(b)}$ on data set S_b using $\mathcal{A}_{\mathsf{base}}$
- Compute leave-one-out models & out-of-bag residuals:

$$\widehat{\mu}_{\varphi \setminus i}(x) = \varphi \Big(\widehat{\mu}^{(b)}(X_{n+1}) : i \notin S_b \Big), \quad R_i = |Y_i - \widehat{\mu}_{\varphi \setminus i}(X_i)|$$

• Prediction interval:

$$\widehat{C}_n(X_{n+1}) = \left[\widehat{\mathsf{Q}}_{\alpha}\left(\mu_{\varphi\setminus i}(X_{n+1}) - R_i\right), \ \widehat{\mathsf{Q}}_{1-\alpha}\left(\mu_{\varphi\setminus i}(X_{n+1}) + R_i\right)\right]$$

¹⁵Kim, Xu, B. 2020, Predictive Inference Is Free with the Jackknife+-after-Bootstrap

⁽Related ideas in the literature: Zhang et al, Devetyarov & Nouretdinov, Löfström et al, Boström et al, Linusson et al)

- Cost of \mathcal{A}_{ens} : *B* calls to \mathcal{A}_{base}
- Cost of jackknife+ for \mathcal{A}_{ens} : Bn calls to \mathcal{A}_{base}
- Cost of jackknife+-after-bootstrap on A_{base} : *B* calls to A_{base}

(Assuming model fitting is the dominant cost — not aggregation / evaluation)

Theorem:

For any distrib. P & any $\mathcal{A}_{\mathsf{base}},\;\;\mathsf{jack}\mathsf{+}\mathsf{-after}\mathsf{-bootstrap}\;\mathsf{satisfies}$

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-2\alpha$$

if the # of ensembled models is a random $B \sim {\sf Binomial}(ilde{B}, heta)$ with

$$\theta = \begin{cases} \left(1 - \frac{1}{n+1}\right)^m, & \text{for bootstrapped samples of size } m, \\ 1 - \frac{m}{n+1}, & \text{for subsamples of size } m \end{cases}$$

Outline:

- 1. Background: conformal prediction
- 2. The jackknife+ and jackknife+-after-bootstrap
- 3. Some extensions

Nonexchangeable conformal prediction (nexCP)

Theory for full conformal relies on:

- 1. $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.)
- 2. Regression algorithm ${\mathcal A}$ treats input data points symmetrically

Theory for full conformal relies on:

- 1. $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.)
- 2. Regression algorithm $\ensuremath{\mathcal{A}}$ treats input data points symmetrically

Challenges in practice:

- (X₁, Y₁),...,(X_n, Y_n), (X_{n+1}, Y_{n+1}) may be nonexchangeable (e.g., distribution drift, dependence over time, ...)
- May want to choose A that treats data nonsymmetrically (e.g., weighted regression, autoregressive model, ...)

Nonexchangeable conformal prediction (nexCP)

The method:¹⁶ draw a random index K with $\mathbb{P}\{K = i\} = w_i$, then:

 $\widehat{C}_n(X_{n+1}) = \{ \text{all } y \in \mathbb{R} \text{ for which the above holds} \}$

¹⁶B., Candès, Ramdas, Tibshirani 2022, Conformal prediction beyond exchangeability

Nonexchangeable conformal prediction (nexCP)

The method:¹⁶ draw a random index K with $\mathbb{P}\{K = i\} = w_i$, then:

 $\widehat{\mathcal{C}}_n(X_{n+1}) = \{ \mathsf{all} \ y \in \mathbb{R} \text{ for which the above holds} \}$

- If data is i.i.d. or exchangeable, coverage $\geq 1 \alpha$
- If exchangeability is violated, control loss of coverage by choosing w_i to be low for "risky" data points (e.g., old data)

Conformal prediction methods bound $\mathbb{P}\left\{Y_{n+1} \notin \widehat{C}_n(X_{n+1})\right\} = \mathbb{E}\left[\underbrace{\mathbf{1}\{Y_{n+1} \notin \widehat{C}_n(X_{n+1})\}}_{\text{zero-one loss}}\right]$

Can use a conformal approach to control other definitions of risk. 17,18 Examples:

- FDR for flagging out-of-distribution data points
- False pos./neg. rates if Y = a set of labels
- Accuracy rate for selecting pixels within an image

¹⁷Angelopolous et al 2021, Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control

¹⁸Bates et al 2021, Distribution-Free, Risk-Controlling Prediction Sets

Conformal prediction can also be applied to an online setting:

- If data points are iid, conformal p-values are valid (and ⊥) at each time t
 ⇒ can use conformal to predict / to test for changepoints¹⁹
- Can bound cumulative error under arbitrary distribution drift 20,21
- If data points form a time series, CP achieves asymptotic coverage under some assumptions²²

¹⁹Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

²⁰Gibbs & Candès 2021, Adaptive conformal inference under distribution shift

²¹Feldman et al 2022, Conformalized Online Learning: Online Calibration Without a Holdout Set

²²Xu & Xie 2021, Conformal prediction interval for dynamic time-series

Weighted conformal prediction

The covariate shift setting:

- Marginal distribution of X is different in training vs. test data (e.g., some groups are under-represented in training data)
- But, distribution of Y|X is the same
- If the shift is \approx known, can apply weighted conformal prediction²³

²³Tibshirani, B., Ramdas, & Candès 2019, Conformal prediction under covariate shift

²⁴Candès, Lei, Ren 2021, Conformalized survival analysis

²⁵Lei & Candès 2020, Conformal inference of counterfactuals and individual treatment effects

²⁶Fannjiang et al 2022, Conformal prediction for the design problem

²⁷Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift 31/32

Weighted conformal prediction

The covariate shift setting:

- Marginal distribution of X is different in training vs. test data (e.g., some groups are under-represented in training data)
- But, distribution of Y|X is the same
- If the shift is \approx known, can apply weighted conformal prediction²³

Applications:

- Survival analysis & censored data²⁴
- Estimating individual treatment effects²⁵
- Prediction in the design problem (active learning)²⁶
- A related problem label shift (for categorical Y / classification)²⁷

²⁴Candès, Lei, Ren 2021, Conformalized survival analysis

²³Tibshirani, B., Ramdas, & Candès 2019, *Conformal prediction under covariate shift*

²⁵Lei & Candès 2020, Conformal inference of counterfactuals and individual treatment effects

²⁶Fannjiang et al 2022, Conformal prediction for the design problem

²⁷Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift 31/32

Website:

http://rinafb.github.io/