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What makes  
AI for Experiments  
special?





We take our models seriously
Alexander, Kaitlin, and Stephen M. Easterbrook. "The software architecture of climate 

models: a graphical comparison of CMIP5 and EMICAR5 configurations." Geoscientific 
Model Development 8.4 (2015): 1221-1232.



Distribution shift is the point
Anomalous rate of precession of the perihelion of Mercury 

https://en.wikipedia.org/wiki/Tests_of_general_relativity

We take our models seriously
Alexander, Kaitlin, and Stephen M. Easterbrook. "The software architecture of climate 

models: a graphical comparison of CMIP5 and EMICAR5 configurations." Geoscientific 
Model Development 8.4 (2015): 1221-1232.



Need to think carefully about baselines

“A common belief in model-free reinforcement learning is that methods 
based on random search in the parameter space of policies exhibit 
significantly worse sample complexity than those that explore the space 
of actions. We dispel such beliefs by introducing a random 
search method for training static, linear policies for 
continuous control problems, matching state-of-the-
art sample efficiency on the benchmark MuJoCo 
locomotion tasks.”

arXiv:1803.07055v1 March 2018
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Active Learning

How can AI guide 
experimentation and 

measurement?  

Computational Measurement

How can we design new 
measurement systems to be 

more interpretable by AI?

Our goal: Create new collaborations, identify under-explored areas, set the stage for next round of funding

For AI + Experiments
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How much do we believe our model? 

Statistics

capture some aspect
of the system

Trust completely

(Kirchhoff ’s diffraction formula)
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WHY ARE INVERSE 
PROBLEMS HARD?

Inverse problems are hard for the same 
reasons that inverting a matrix is hard. 
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Linear inverse problem
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not full rank? hard
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How to solve? Use prior knowledge! 
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ENGINEERED PSF FOR 3D STORM
Astigmatic Double Helix

Pavani, S. R. P., Thompson, M. A., Biteen, J. S., Lord, S. J., Liu, N., Twieg, R. J., … Moerner, W. E. 
(2009). Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit 
by using a double-helix point spread function. Proceedings of the National Academy of 
Sciences of the United States of America, 106(9), 2995–2999. http://doi.org/10.1073/
pnas.0900245106

Huang, B., Wang, W., Bates, M., & Zhuang, X. (2008). Three-Dimensional Super-Resolution 
Imaging by Stochastic Optical Reconstruction Microscopy. Science, 319(5864), 810–813. http://
doi.org/10.1126/science.1153529
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2D COMPARISON

ADCG: Alternating Descent Conditional Gradient
Boyd, Nicholas, Geoffrey Schiebinger, and Benjamin Recht. "The alternating descent conditional gradient method for 

sparse inverse problems." SIAM Journal on Optimization 27, no. 2 (2017): 616-639.
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Computational Measurement
How can we design new measurement systems 
to be more interpretable / useful for AI?
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What is your query?
How many bits are you trying to extract from your system? 

12 Megapixels (MB)

JPEG

170 kB

Is it possible to only 
collect 170 kB of data? 

Tumor?
[ ] Yes 
[ ] No

1-bit measurement 
system



Compressive Sensing

IEEE Signal Processing Magazine March 2008



DiffuserCam
Single-shot 3D acquisition

Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller, 
"DiffuserCam: lensless single-exposure 3D imaging," Optica 5, 1-9 (2018)
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Single-shot 3D acquisition

Nick Antipa, Grace Kuo, Reinhard Heckel, Ben Mildenhall, Emrah Bostan, Ren Ng, and Laura Waller, 
"DiffuserCam: lensless single-exposure 3D imaging," Optica 5, 1-9 (2018)



How can AI help?

Kristina Monakhova, Joshua Yurtsever, Grace Kuo, Nick Antipa, Kyrollos Yanny, and 
Laura Waller, "Learned reconstructions for practical mask-based lensless imaging," 
Opt. Express 27, 28075-28090 (2019)

Xiuxi Pan, Xiao Chen, Tomoya Nakamura, and Masahiro Yamaguchi, "Incoherent reconstruction-free object recognition with 
mask-based lensless optics and the Transformer," Opt. Express 29, 37962-37978 (2021)




Active Learning
How can AI guide experimentation 
and measurement?  
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Measuring Receptive Fields

Paninski, Liam. "Asymptotic theory of information-theoretic experimental design." Neural Computation 17.7 (2005): 1480-1507.
Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurIPS 2012
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Active Learning Receptive Fields

Bayesian Active Learning with localized priors for fast receptive field characterization. Park, Pillow NeurIPS 2012

So why isn’t this used? 

• Implementation is hard and complex!

• Even though theory bounds error, 
theory is based on a model (which 
may be wrong!)

• Easier to just spend $3B and scale 
up experiments
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How much AI progress is necessary?

“How can I  
analyze my  

data?”

“Existing algorithms 
aren’t quite right” 

“Can you replace 
my grad student?” 

Regression Sentience

• ML provides fundamentally new 
capabilities but is “mostly there” 
already

• Creative ideas beyond existing 
work — rethinking what’s possible

• Existing baselines so you 
understand how much progress 
can be made

sweet spot for us
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What is a robot?

S P E C T R O M E T E R SM R  I M A G E R S

C Y T O M E T E R S

T E L E S C O P E S

A C C E L E R AT O R S … A N D  M O R E



The future of AI + Measurement

Every scientific instrument is a robot and 
can be smarter

Tremendous opportunities for 
collaboration across U. Chicago and 
National Labs

Getting people in the same room is just a 
start — they have to speak each other’s 
language! 


A C C E L E R AT O R S



Extra Slides



Contemporary computational approaches for 
spectral analysis are effectively library lookups 
(thus can only find “known knowns”)

Lack of automated analysis  
inhibits scientific advancement

Inhibits scale Inhibits Robotic Laboratories Inhibits new instrumentation

80% of human small metabolites  
are still unknown [1] 

(even worse for other organisms) 

Yet there are >1060 possible small molecules! 
(obviously impossible to build comprehensive libraries)

Crude oil can have over 1,000,000 
unique compounds [2] and its 

composition is still a mystery [3]

Automated synthetic chemistry 
and wet lab platforms are 

coming online

But how do we know what they 
made? Can’t close the loop if 
you can’t measure the output 

Quantum Sensing and other 
molecule sensing techniques 

are increasingly viable

Often have fundamentally different 
tradeoffs from classical instrumentation, 

resulting in tremendous data 
interpretation challenges

[1] Dias, D., Jones, et. al. (2016). Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites, 6(4), 46.

[2] Beens, J., Blomberg, J., & Schoenmakers, P. J. (2000). Proper Tuning of Comprehensive Two-Dimensional Gas Chromatography (GC×GC) to Optimize the 

Separation of Complex Oil Fractions. Journal of High Resolution Chromatography, 23(3), 182–188.

[3] Panda, S. K., Andersson, J. T., & Schrader, W. (2009). Characterization of supercomplex crude oil mixtures: What is really in there? Angewandte Chemie - 

International Edition, 48(10), 1788–1791.
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What is an inverse problem?

Model System

Physical properties, 
unknowns

Observables

Measurements 
and data

The forward problem

(easy)

The inverse problem 
(hard)

20th Century Measurement 

Linear, continuous inverse problems transformed 
measurement in the latter half of the 20th century
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Forward

SCF/DFT solves the forward problem for many 
modalities of interest

Calculating the spectrum for a given structure

Calling this “easy” is a stretch — performance is cubic in the number 
of atoms and many aspects of experimental setup (conformational 

diversity, salvation, etc.) are still challenging. 

Inverse

Highly nonlinear forward model

Combinatorial solution space


Single correct structure! 

Deducing the structure for a given spectrum

This is incredibly challenging, a long-
standing open problem
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Structured prediction via deep imitation 
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processes where ab initio techniques fail. 
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AI advances make this possible

Physics-informed deep learning and graph 
neural networks let us generate millions of 

synthetic spectra for training data 

Structured prediction via deep imitation 
learning lets us learn to build molecules 
consistent with observed spectra

We’re developing AI techniques to solve this. 

Deep latent variable models let us model 
and understand physical measurement 

processes where ab initio techniques fail. 

Research Objectives

NMR MS

We’ve had early success in NMR and are moving 
into mass spec

Fast model to simulate 
spectra: DFT accuracy in 

milliseconds

Can predict correct structure 
with high accuracy on a wide 

variety of compounds from  

1D 13C spectrum

Computational forward 
model still an open research 

challenge! 

Next big 

challenge

Fo
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Solution: build a fast approximation to the forward model 
that lets you generate 100 M synthetic spectra
(Bootstrapped from 30k experimental spectra)

HOSE
codes

DFT

GNN

13C 1H

Mean absolute prediction error (ppm)

Lorem ipsum

1. We need a lot of training data! 

[1] Jonas, Kuhn. Rapid prediction of NMR spectral properties with 
quantified uncertainty. Journal of Cheminformatics, 11(1): 2019. 
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Methodologies We learn to build molecules from spectroscopic data 
by first taking them apart

3.Generate candidate structures

Search tree generating candidate structures from 
observed spectrum using learned function

4. Use fast forward model to validate!

Observed Spectrum

Recovered Candidates

Spectrum
Comparison
MSE

forward

forward

forward

0.17

6.75

8.19

Candidate evaluation

We predict the right structure  
68% of the time (up from 56% in 2020)
(96% of the time on most-confident mols!)

Solution: Construct molecule incrementally — use deep imitation 
learning to learn to place the next bond of a partial molecule [2]
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Three Phases

Build fast precise 
forward model 

Real-time solution to 
Inverse problem

Compute optimal next 
measurement

NMRShiftDB : 50k NMR exp

NIST-17 : 250k GC/EI-MS exp

SDBS: 20k NMR exp

MassBank: 50k LC-MS/MS exp

At UChicago we have:

7 NMR specrometers

(Bruker 400MHz+)

8 MS instruments 
(GC-EI/MS, QTOF,  

incoming Thermo Orbitraps)

Why start with commodity spectroscopic modalities like NMR and MS? 

Existing Data Reliable Ubiquitous 
Hardware

Existing Platforms are 
programmable

Custom real-time pulse sequence 
design via Bruker hardware

MS HW enables programmatic 
control over collision energies 

and peak selection for 
fragmentation
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Completely solve MS 
forward model for $100k

We are developing solutions to generate 
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Developing new techniques for acquisition
Modern AI requires tons of data

“Shotgun spectrometry”

Generate 10k known reaction products  
in a day for $5k

A modern MS machine can select a single 
m/z before fragmentation — useful for 
complex mixtures

Combinatorial Chemistry

1.Generate a mixture of 10k molecules 
with maximal molecular weight diversity 

2.Perform LC/MS/MS on the combined 
mixture at each level 

3.Train our new models on the resulting 
lightly-separated mixtures — some 
overlap will exist and that’s ok

Can potentially scale CombChem to 100k per batch

Completely solve MS 
forward model for $100k

We are developing solutions to generate 

massive quantities of training data called
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Fast model to simulate 
spectra: DFT accuracy for 
chemical shifts in milliseconds

Correct structure with high 
probability from 1D 13C via 
deep imitation learning

Prediction of scalar (J) 
coupling, NOE, other 
relaxation effects

Incorporation of solvent effects and 
conformational diversity for 
beyond-DFT accuracy of 1D 1H

Incorporation of real-time 
estimation for automated selection 
of optimal pulse sequence

Complete structure from 
1H 1D spectra in 
challenging environments

Fast model to simulate novel 
spectra using existing 
fragmentation heuristics for EI-MS

Automatic discovery of 
fragmentation pathways directly 
from data (QTOF MS/MS)

Recover correct structure of small 
molecules (<32a) from EI-MS spectra 
via deep imitation learning 

Multi-collision-energy and retention 
time -based recovery using learned 
pathway for larger molecules

Machine-learning-guided 
data dependent acquisition 
for complex mixtures 
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 Jonas, Kuhn. Rapid prediction of NMR spectral properties with 
quantified uncertainty. Journal of Cheminformatics, 11(1): 2019. 

Jonas, Deep Imitation Learning for Molecular Inverse Problems, 
Advances in Neural Information Processing Systems 2019

Optimal Experiment Design 
and Active Learning



Self-driving spectrometers
Designing Algorithms, Software, and Systems to Measure Every Molecule

Scalable measurement 
of complex mixtures

Allowing end-to-end 
laboratory automation

Ultimately allowing  
novel spectroscopic 

techniques 

Making possible:

Structured prediction via 
Deep Imitation Learning 

Optimal experimentation 
via real-time active 

learning

Better fast forward 
models via physics-
informed Graph NNs

By new AI techniques:


