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What’s New About This Study?

● More carefully handles parameter correlations and 
degeneracies than previous studies

● Reports parameter-dependent resolutions and multi-
dimensional allowed regions for a wide range of true 
parameters

● More studies without the reactor θ13 constraint
● Sensitivity to tension with reactor measurement
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Pseudoexperiment “Throw” Studies

Parameter Value

sin22θ13 0.88

Δm2
32 2.45x10-3 eV2

sin2θ23 0.58

δcp -0.25π

Parameter Value

sin22θ13 0.88

Δm2
32 2.45x10-3 eV2

sin2θ23 0.58

δcp -0.5π

● Many pseudoexperiments simulated, true systematics 
randomly varied

● Two true points, simulated at 100 and 1000 ktMWyrs

True Point 1 True Point 2
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Precision Measurement 
Capabilities: 100ktMWyr Exposure

True Point 1 True Point 2
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Precision Measurement 
Capabilities: 100ktMWyr Exposure

θ13-θ23 
correlation

δCP 
degeneracy

δCP  reduced 
resolution

True Point 1 True Point 2
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Precision Measurement 
Capabilities: 1000ktMWyr Exposure

θ13-θ23 
correlation

δCP 
degeneracy

δCP  reduced 
resolution

True Point 1 True Point 2
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True Point 1: Full 4D Parameter 
Space
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Asimov Studies: θ13 Resolution

sin2θ23 = 0.58

Exposure: 1000 ktMWyrs

sin2θ23 = 0.46

sin2θ23 = 0.54
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100 ktMWyrs

250 ktMWyrs

1000 ktMWyrs

Asimov 
Studies

δCP 
Resolution

sin2θ23 = 0.58 
for all
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Asimov Studies: θ23 Resolution

Exposure: 1000 ktMWyrs
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Asimov Studies: 2D Scan

● Scan in θ13-θ23 space
● True Point:

● sin22θ13 = 0.088
● sin2θ23 = 0.42
● All other parameters 

at nu-fit 4.0
● CLs: 

● 1σ: Δχ2 ≈ 1
● 90%: Δχ2 ≈ 2.7
● 3σ: Δχ2 ≈ 9

1σ:              90%:            3σ:   

Octant Flip at 3σ
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Asimov Studies: 2D Scan

● Scan in θ13-θ23 space
● True Point:

● sin22θ13 = 0.088
● sin2θ23 = 0.58
● All other parameters 

at nu-fit 4.0
● CLs: 

● 1σ: Δχ2 ≈ 1
● 90%: Δχ2 ≈ 2.7
● 3σ: Δχ2 ≈ 9

1σ:              90%:            3σ:   

Octant Flip at 3σ
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Asimov Studies: 2D Scan

● Scan in θ13-θ23 space
● True Point:

● sin22θ13 = 0.063
● sin2θ23 = 0.58
● All other parameters 

at nu-fit 4.0
● CLs: 

● 1σ: Δχ2 ≈ 1
● 90%: Δχ2 ≈ 2.7
● 3σ: Δχ2 ≈ 9

1σ:              90%:            3σ:   

Octant Flip at 3σ
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Asimov Studies: 2D Scan

● Scan in θ13-θ23 space
● True Point:

● sin22θ13 = 0.113
● sin2θ23 = 0.42
● All other parameters 

at nu-fit 4.0
● CLs: 

● 1σ: Δχ2 ≈ 1
● 90%: Δχ2 ≈ 2.7
● 3σ: Δχ2 ≈ 9

1σ:              90%:            3σ:   

NO Octant Flip at 3σ
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Asimov Studies: 2D Scan

● Scan in θ13-θ23 space
● True Point:

● sin22θ13 = 0.113
● sin2θ23 = 0.42
● All other parameters 

at nu-fit 4.0
● CLs: 

● 1σ: Δχ2 ≈ 1
● 90%: Δχ2 ≈ 2.7
● 3σ: Δχ2 ≈ 9

1σ:              90%:            3σ:   

NO Octant Flip at 3σWhy no octant flip? νμ disappearance
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Oscillation Probability Plots

● ΔP/P = (P(fixed) – 
P(normal))/P(normal)

● Normal point:

● NO, ssth23 = 0.50, 
δCP = 0, all others at 
nufit

●  Fixed Points: All NO

ss2th13 ssth23 δCP

1 0.088 0.50 -π/2

2 0.088 0.50 -π/4

3 0.088 0.58 -π/4

4 0.113 0.44 -π/4
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Oscillation Probability Plots

● ΔP/P = (P(fixed) – 
P(normal))/P(normal)

● Normal point:

● NO, ssth23 = 0.50, 
δCP = 0, all others at 
nufit

●  Fixed Points: All NO

ss2th13 ssth23 δCP

1 0.088 0.50 -π/2

2 0.088 0.50 -π/4

3 0.088 0.58 -π/4

4 0.113 0.44 -π/4
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New Physics? Indirect Test of 
PMNS Non-unitarity
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New Physics? Indirect Test of 
PMNS Non-unitarity

● PMNS matrix:
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● PMNS matrix:

● Assuming unitarity allows parameterization with 
familiar mixing angles/CP phase

New Physics? Indirect Test of 
PMNS Non-unitarity
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● PMNS matrix:

● Assuming unitarity allows parameterization with 
familiar mixing angles/CP phase

● If unitarity, DUNE measures

New Physics? Indirect Test of 
PMNS Non-unitarity
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● PMNS matrix:

● Assuming unitarity allows parameterization with 
familiar mixing angles/CP phase

● If unitarity, DUNE measures
● via νμ disappearance: 

New Physics? Indirect Test of 
PMNS Non-unitarity
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● PMNS matrix:

● Assuming unitarity allows parameterization with 
familiar mixing angles/CP phase

● If unitarity, DUNE measures
● via νμ disappearance:

● via νe appearance:  

New Physics? Indirect Test of 
PMNS Non-unitarity
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● If unitarity, DUNE measures
● via νμ disappearance:

● via νe appearance:  
● Daya Bay (reactor SBL) measures:

● via νe disappearance: 

New Physics? Indirect Test of 
PMNS Non-unitarity
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● If unitarity, DUNE measures
● via νμ disappearance:

● via νe appearance:  
● Daya Bay (reactor SBL) measures:

● via νe disappearance: 
● DUNE and Daya Bay obtain independent 

measurements of θ13

New Physics? Indirect Test of 
PMNS Non-unitarity
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● If unitarity, DUNE measures
● via νμ disappearance:

● via νe appearance:  
● Daya Bay (reactor SBL) measures:

● via νe disappearance: 
● DUNE and Daya Bay obtain independent 

measurements of θ13

● If unitarity, θ13 measurements should agree

New Physics? Indirect Test of 
PMNS Non-unitarity
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● If unitarity, DUNE measures
● via νμ disappearance:

● via νe appearance:  
● Daya Bay (reactor SBL) measures:

● via νe disappearance: 
● DUNE and Daya Bay obtain independent 

measurements of θ13

● If θ13 measurements are in tension, non-unitarity

New Physics? Indirect Test of 
PMNS Non-unitarity
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Daya Bay’s θ13 Measurement
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DUNE’s Sensitivity to PMNS Non-
unitarity

● Asimov fits at 21 eff. 
true θ13 and 5 eff. 
true θ23 points.
● Δχ2 is difference 

between θ13 penalty 
χ2 and no penalty χ2

● 1DOF Δχ2?
● Octant flip decreases 

sensitivity for
● High θ13, low θ23

● Low θ13, high θ23
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DUNE’s Sensitivity to PMNS Non-
unitarity

● Octant flip 
asymmetry: higher 
sensitivity for 
high/low θ13/θ23 than 
low/high θ13/θ23

● Higher sensitivity 
for non-maximal, 
non-octant-flipping 
θ23
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DUNE’s Sensitivity to PMNS Non-
unitarity

● If T2K’s center 
(sin22θ13 = 0.105) is 
accurate to accelerator 
LBL effective θ13:
● 2σ – 4.5σ tension
● Best case: highly 

non-maximal upper 
octant θ23

● Worst case: 
somewhat non-
maximal lower 
octant θ23
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Sensitivity Largely Independent 
of δCP/Mass Hierarchy

δCP = 0, NH 

δCP = -π/2, NH 

δCP = π/2, NH 

δCP = 0, IH 
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Next Steps

● More thoroughly interpret Δχ2 of tension with Daya 
Bay

● Report accurate DUNE measurement resolutions for 
θ13, θ23, δcp

● Add two fixed points to prob plots to show MO and δCP 
effect

● Compare single point throws and Asimov scan for δCP 

resolution
● Degeneracy present in throws, not in Asimov scan

● Reproduce T2K JCP plots for DUNE
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Conclusions

● DUNE’s precision requires understanding correlations and 
degeneracies in 4D oscillation parameter space
● Degenerate δcp and correlated θ13 – θ23

● Investigated via single true point throws and scanning Asimov studies
● Exhibited DUNE’s θ13 and θ23 resolution (with degeneracies) at 

1000 ktMWyrs, δCP measurement resolution at 100, 250, and 
1000 ktMWyrs

● Fixed point ΔP/P plots show wide energy spectrum critical to 
resolving θ13 – θ23 degeneracy

● DUNE highly sensitive to an indirect test of PMNS non-unitarity 
when combined with Daya Bay’s θ13 result
● Highly dependent on true parameter values
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Backups
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Neutrino Mixing

● Can parameterize PMNS matrix assuming unitarity 
(big assumption):

● Unitarity means only three flavor/mass states
● Non-unitarity→ new physics!
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Neutrino Oscillation

● DUNE can’t measure these mixing parameters directly
● χ2 fit used to obtain mixing parameters from 

appearance/disappearance measurements



Jeremy Fleishhacker38

Neutrino Oscillation

● DUNE can’t measure these mixing parameters directly
● χ2 fit used to obtain mixing parameters from 

appearance/disappearance measurements
● Parameter dependencies can lead to errors in fits 

(oops!)
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● DUNE will have the ability to make precision 
measurements of these parameters, including the level 
of charge-parity (CP) violation for leptons.

● Previous measurements of oscillation parameters have 
been treated independently, omitting possible 
correlations that become significant as experimental 
precision increases.

● Understanding how DUNE fits of oscillation 
parameters are affected by these correlations enables 
more accurate evaluation of DUNE measurement 
resolutions and sensitivity to new physics.

Parameter Correlations and 
Degeneracies: Why Do We Care?
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 Correlations/Degeneracies: TDR 
Analysis

● Resolution plots using long 
baseline (LBL) technical 
design report (TDR) analysis 
data

● Simulated experiments 
(pseudo-experiments) for 
different sets of true 
parameter values, post fit 
(pf) parameter values 
generated for each set

● TOP: δcp pf – true vs true
● BOTTOM: sin2θ23 pf – true 

vs true
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Correlations/Degeneracies: TDR 
Analysis

● δcp degeneracy captured at 90% near true values of -0.8π, -0.7π, 
-0.4π, -0.3π

● θ13 “error mode” significance/position depends on θ23

Red line: 68% conf. int.
Blue line: 90% conf. int.
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Correlations/Degeneracies: TDR 
Analysis

● δcp degeneracy captured at 90% near true values of -0.8π, -0.7π, 
-0.4π, -0.3π

● θ13 “error mode” significance/position depends on θ23 and 
exposure

Red line: 68% conf. int.
Blue line: 90% conf. int.
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θ23 octant flip effect on θ13

0.45 < sin2θ23 < 0.55 sin2θ23 < 0.45 or > 0.55
● Above: θ13 Post fit - true distributions, θ23 measured in wrong octant

● θ23 octant error leads to bimodality in θ13 measurement

● Less maximal θ23 = greater bimodality

● Asymmetry between modes on right plot: what favors under- vs over-estimation?
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δcp effect?

● Flipping δcp appears to be uncorrelated with θ13 measurement
● δcp degeneracy appears to be independent of θ13-θ23 

correlation

0.45 < sin2θ23 < 0.55 sin2θ23 < 0.45 or > 0.55
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θ23 octant flip effect on θ13

7 year exposure 15 year exposure

● sin22θ13 post fit distribution shown at fixed sin2θ23 ≈ 0.58.
● Underestimated sin2θ23 corresponds to overestimated sin22θ13, gap 

between modes due to disfavored maximal θ23

● Increasing exposure decreases octant error significance

True sin2θ23 ≈ 0.58 True sin2θ23 ≈ 0.58 
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θ23 octant flip effect on θ13

7 year exposure 15 year exposure

● sin22θ13 post fit distribution shown at fixed sin2θ23 ≈ 0.58.
● Underestimated sin2θ23 corresponds to overestimated sin22θ13, gap 

between modes due to disfavored maximal (~0.5) sin2θ23

● Increasing exposure decreases octant error significance

True sin2θ23 ≈ 0.58 
Red: 68% conf.
Blue: 90% conf.

True sin2θ23 ≈ 0.58 
Red: 68% conf.
Blue: 90% conf.
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PF θ13 distribution depends on θ23

7 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23
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PF θ13 distribution depends on θ23

10 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23

Relative size of error mode decreases with exposure
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PF θ13 distribution depends on θ23

15 year exposure

● Narrower true 
mode peak, 
greater true-
error mode 
separation at 
non-maximal 
θ23

● Broader true 
mode peak, 
no bimodality 
at maximal θ23

Relative size of error mode decreases with exposure



DUNE @ Snowmass 202250

New Physics? PMNS Non-unitarity

● PMNS matrix parameterized under assumption of 
unitarity

● Non-unitarity→ More neutrino states → physics 
beyond SM

● If PMNS is non-unitary, θ13 becomes an effective 
mixing angle
● Different measurements may yield different values

● Comparing DUNE’s precision θ13 measurement to 
Daya Bay’s may amount to an indirect test of PMNS 
non-unitarity
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Neutrino Mixing

● Can parameterize PMNS matrix:

● Unitarity means only three flavor/mass states
● Non-unitarity→ new physics!
● DUNE (accelerator experiment) can measure blue 

highlighted parameters
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The DUNE Experiment

● Deep Underground Neutrino Experiment

● Large international collaboration aiming to make precise 
measurements of neutrino oscillation parameters

● Accelerator neutrino experiment with near and far detectors
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Neutrino Oscillation/Mixing

● Neutrinos Mix! Created and destroyed in flavor states 
but propagate in mass states:

 

Flavor state Flavor state

Mass state
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Neutrino Oscillation/Mixing

● Neutrinos Mix! Created and destroyed in flavor 
eigenstates but propagate in mass eigenstates

● Mixing described by PMNS Matrix:

 

Flavor States Mass States
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The Mixing Matrix

● Can parameterize PMNS matrix:

cij = cosθij, sij = sinθij

● Assumes only three flavor/mass states
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The Mixing Matrix

● Can parameterize PMNS matrix:

cij = cosθij, sij = sinθij

● Assumes only three flavor/mass states

● DUNE will measure θ13, θ23, δCP
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Why Measure δCP?

● δCP = charge-parity (CP) violation in lepton sector
● CP symmetry = invariant physics when mirroring 

space and reversing charge

ν
ν

● CP violation could explain 
matter-antimatter 
asymmetry

● Lepton CP violation not 
known
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Why Measure θ13 and θ23?

● Increase precision of 
PMNS element 
measurements
● Why are CKM and 

PMNS matrices so 
different?

● Is there a μ-τ mixing 
symmetry?

● Physics beyond the 
Standard Model
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Neutrino Oscillation Probabilities

● DUNE can’t measure oscillation parameters directly
● Instead measures oscillation probabilities, which 

depend on the parameters in a complicated way:
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Neutrino Oscillation Probabilities

● DUNE can’t measure these mixing parameters directly
● Instead measures oscillation probabilities, which 

depend on the parameters in a complicated way:

sin2θ23sin22θ13 δCP
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Asimov Studies

● Fix “Asimov” point of true 
parameters

● All systematics nominal, exposure 
1000 ktMWyrs

● Pick up to two parameters to “scan” 
(fix away from their true values) and 
calculate the scan χ2 at each scan 
point

● Take the difference between the scan 
χ2 and the global χ2 to find Δχ2 and 
calculate confidence intervals 
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Neutrino Oscillation Probabilities
● Complicated parameter 

dependencies lead to 
degeneracies and 
correlations
● e.g. θ13-θ23 correlation 

resulting from leading term 
dependence

sin22θ13

si
n2 θ

23
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Sources of Degeneracy

● θ13-θ23:  νe appearance dependence on product 
sin2θ23sin22θ13 leads to anti-correlation
● νμ constraint on sin22θ23 not sin2θ23 (for low θ13)

● δCP: sine dependence at flux peak (Δ31=π/2)
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How do these Degeneracies 
Arise?

● θ13-θ23:  νe appearance dependence on product 
sin2θ23sin22θ13 leads to anti-correlation
● Not entirely degenerate due to νμ disappearance 

constraint:

● δCP: sine dependence at flux peak (Δ31=π/2)

Contours of Equal Probability at Flux Peak
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