Prospects for Precision Measurements at DUNE

Jeremy Fleishhacker and Chris Marshall University of Rochester 8 August, 2022

What's New About This Study?

- More carefully handles parameter correlations and degeneracies than previous studies
- Reports parameter-dependent resolutions and multidimensional allowed regions for a wide range of true parameters
- More studies without the reactor θ_{13} constraint
- Sensitivity to tension with reactor measurement

Pseudoexperiment "Throw" Studies

True Point 1

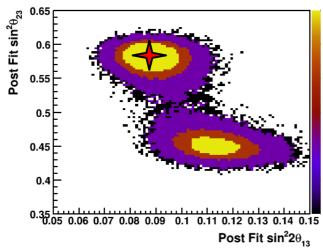
	D	
Irπ	Point	,
rruc	I UIIIL	_

Parameter	Value
$sin^22\theta_{13}$	0.88
Δm^2_{32}	2.45x10 ⁻³ eV ²
$\sin^2 \theta_{23}$	0.58
$\delta_{\sf cp}$	-0.25π

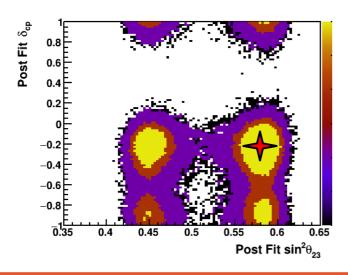
Parameter	Value
$\sin^2 2\theta_{13}$	0.88
Δm^2_{32}	2.45x10 ⁻³ eV ²
$\sin^2\!\theta_{23}$	0.58
$\delta_{\sf cp}$	-0.5 π

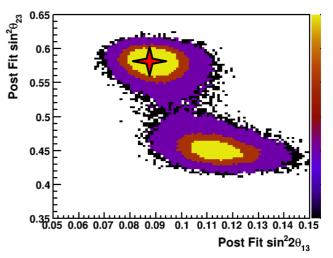
- Many pseudoexperiments simulated, true systematics randomly varied
- Two true points, simulated at 100 and 1000 ktMWyrs

Precision Measurement Capabilities: 100ktMWyr Exposure

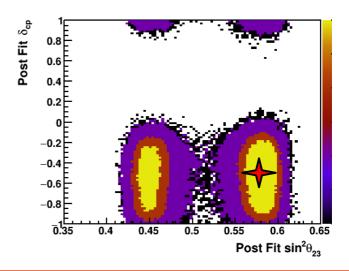


True Point 1

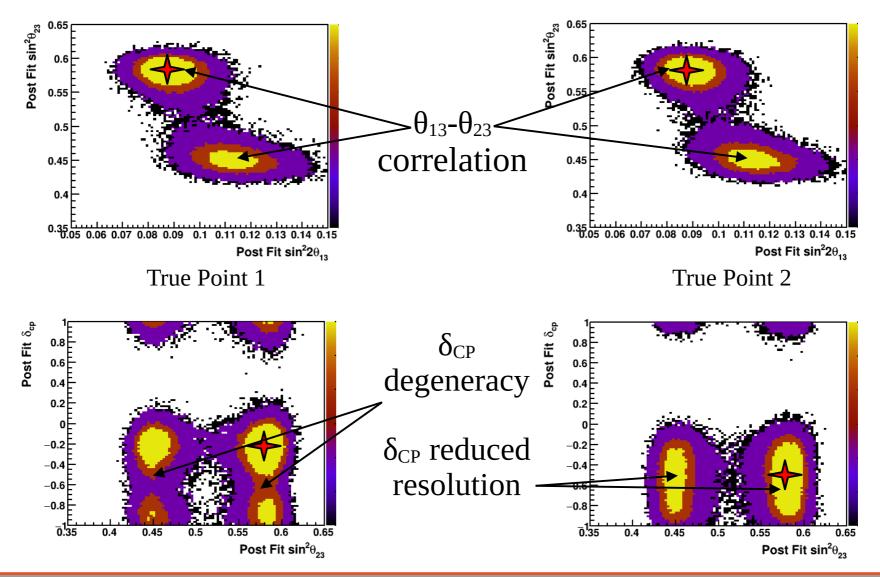




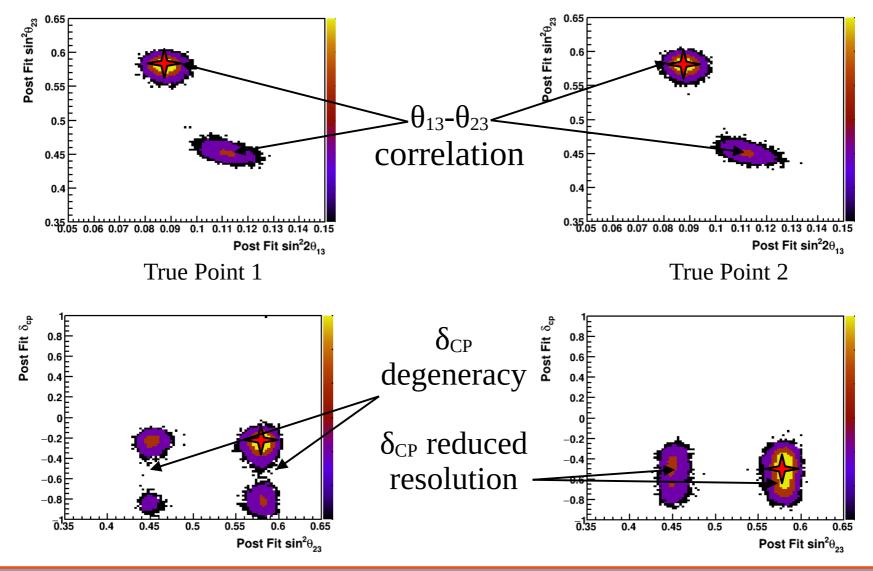
True Point 2



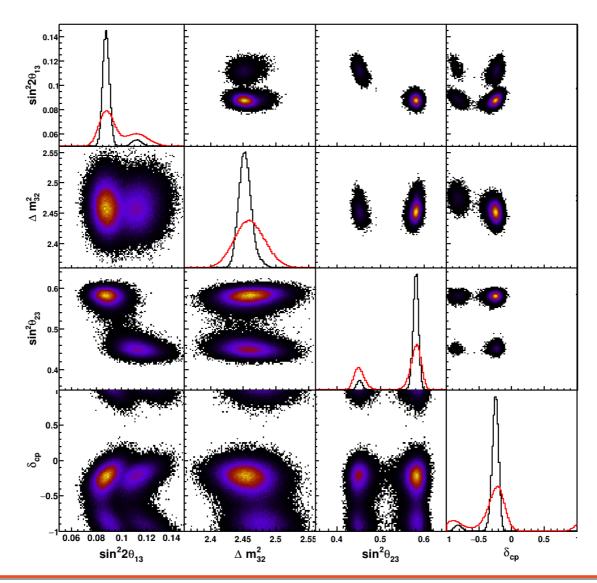
Precision Measurement Capabilities: 100ktMWyr Exposure



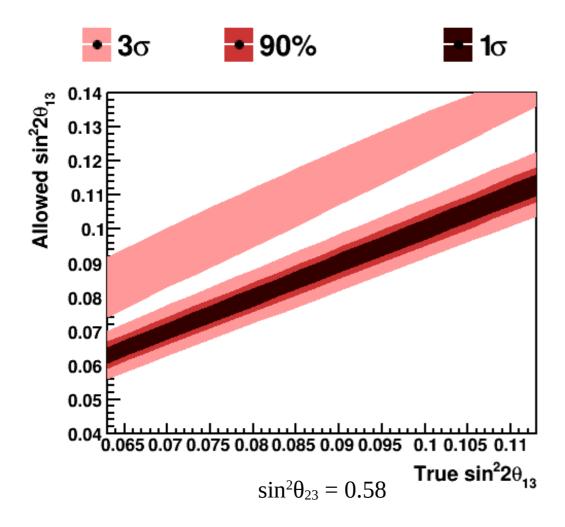
Precision Measurement Capabilities: 1000ktMWyr Exposure

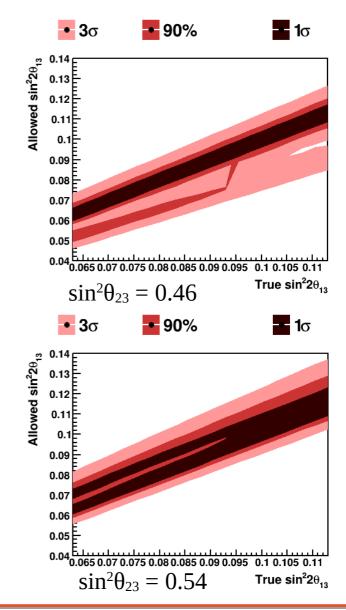


True Point 1: Full 4D Parameter Space

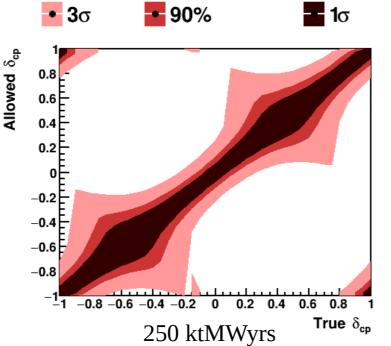


Asimov Studies: θ₁₃ Resolution

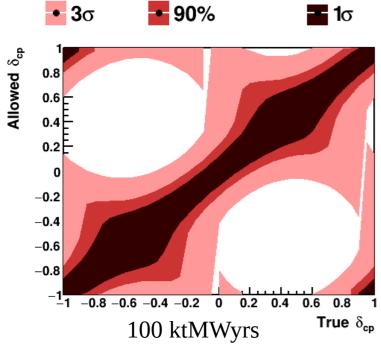


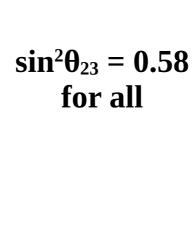


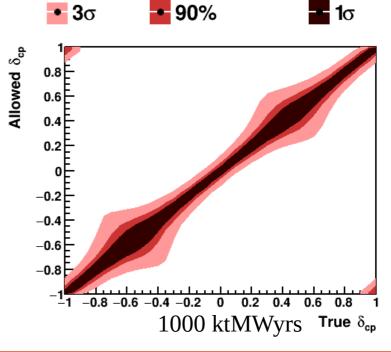
Asimov Studies Studies



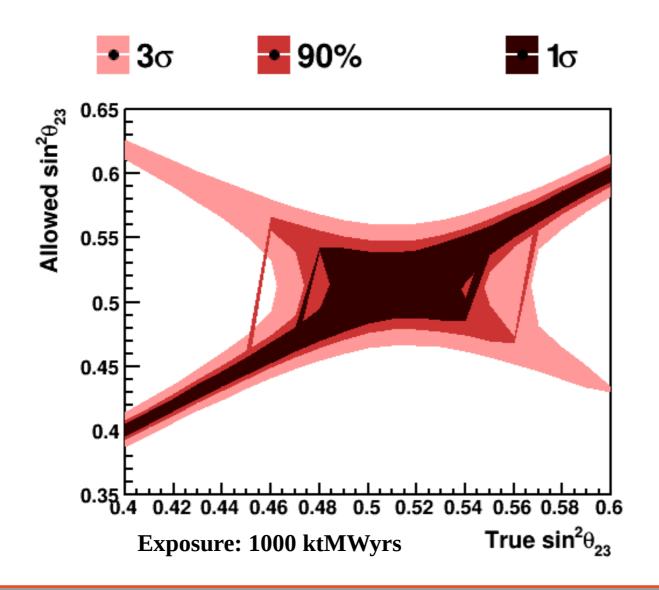
δ_{CP} Resolution



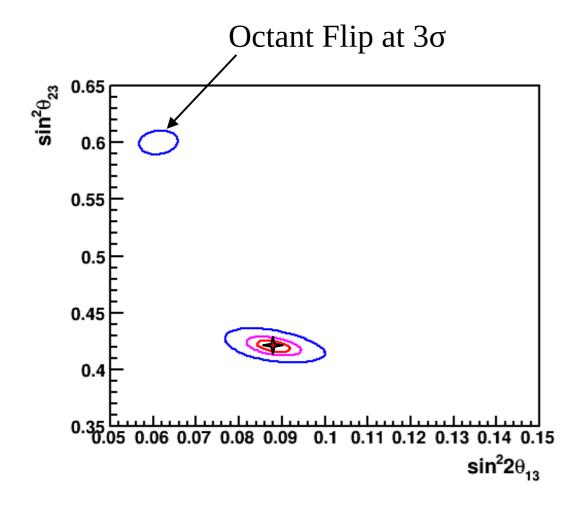




Asimov Studies: θ₂₃ Resolution

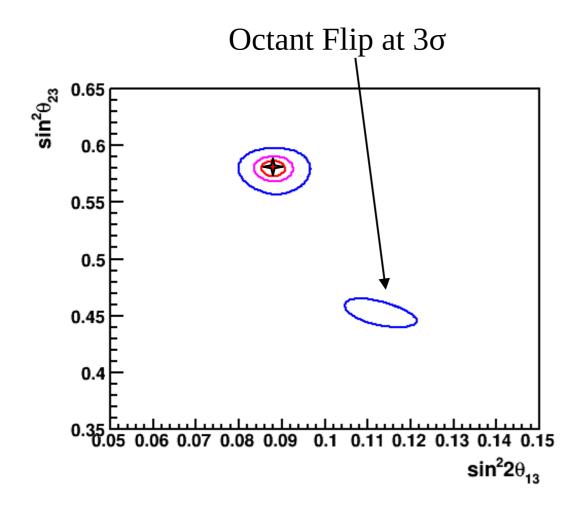


1σ: 90%: 3σ:



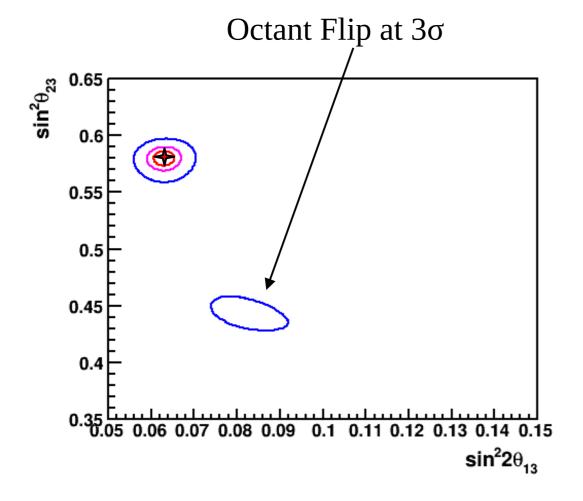
- Scan in θ_{13} - θ_{23} space
- True Point:
 - $\sin^2 2\theta_{13} = 0.088$
 - $\sin^2\theta_{23} = 0.42$
 - All other parameters at nu-fit 4.0
- CLs:
 - 1σ : $\Delta \chi^2 \approx 1$
 - 90%: $\Delta \chi^2 \approx 2.7$
 - 3σ : $\Delta \chi^2 \approx 9$

1σ: 90%: 3σ:



- Scan in θ_{13} - θ_{23} space
- True Point:
 - $\sin^2 2\theta_{13} = 0.088$
 - $\sin^2\theta_{23} = 0.58$
 - All other parameters at nu-fit 4.0
- CLs:
 - 1σ : $\Delta \chi^2 \approx 1$
 - 90%: $\Delta \chi^2 \approx 2.7$
 - 3σ : $\Delta \chi^2 \approx 9$

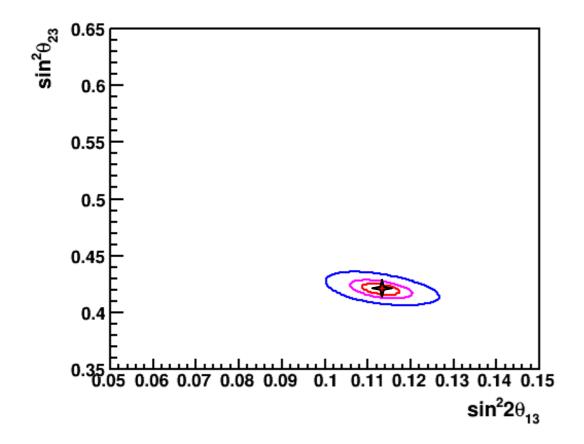
1σ: 90%: 3σ:



- Scan in θ_{13} - θ_{23} space
- True Point:
 - $\sin^2 2\theta_{13} = 0.063$
 - $\sin^2\theta_{23} = 0.58$
 - All other parameters at nu-fit 4.0
- CLs:
 - 1σ : $\Delta \chi^2 \approx 1$
 - 90%: $\Delta \chi^2 \approx 2.7$
 - 3σ : $\Delta \chi^2 \approx 9$

 $1\sigma:$ 90%: $3\sigma:$

NO Octant Flip at 3σ



- Scan in θ_{13} - θ_{23} space
- True Point:
 - $\sin^2 2\theta_{13} = 0.113$
 - $\sin^2\theta_{23} = 0.42$
 - All other parameters at nu-fit 4.0
- CLs:
 - 1σ : $\Delta \chi^2 \approx 1$
 - 90%: $\Delta \chi^2 \approx 2.7$
 - 3σ : $\Delta \chi^2 \approx 9$

• Scan in A₁₂-A₂₂ snace

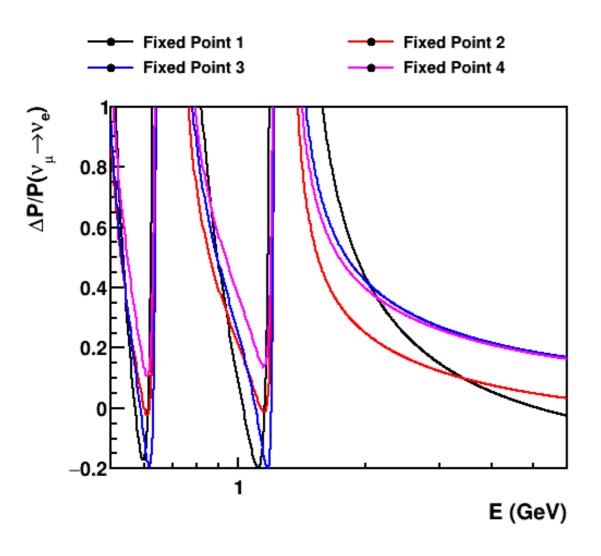
Why no octant flip? v_{μ} disappearance

$$P(\overline{
u}_{\mu}^{g}) \rightarrow P(\overline{
u}_{\mu}) \simeq 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}$$
 $\times (1 - \cos^2\theta_{13}\sin^2\theta_{23})$
 $\times \sin^2\Delta_{atm}$
 $\times \sin^2\Delta_{atm}$

sin²2θ₁₃

- $1\sigma: \Delta \chi^2 \approx 1$
- 90%: $\Delta \chi^2 \approx 2.7$
- 3σ : $\Delta \chi^2 \approx 9$

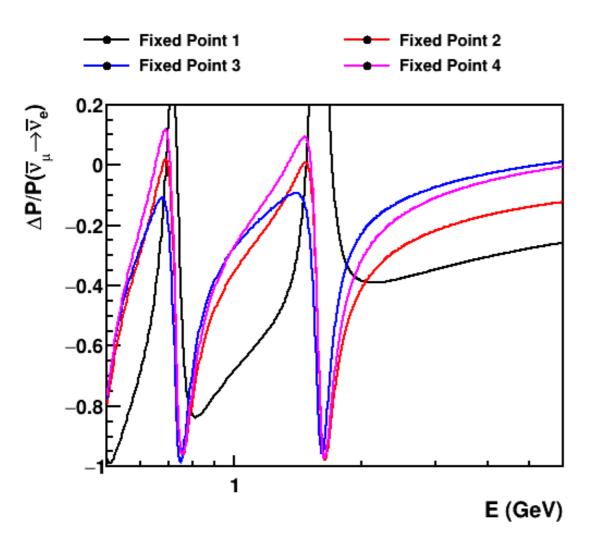
Oscillation Probability Plots



- $\Delta P/P = (P(fixed) P(normal))/P(normal)$
- Normal point:
 - NO, ssth23 = 0.50, δ_{CP} = 0, all others at nufit
- Fixed Points: All NO

	ss2th13	ssth23	δ_{CP}
1	0.088	0.50	-π/2
2	0.088	0.50	-π/4
3	0.088	0.58	-π/4
4	0.113	0.44	-π/4

Oscillation Probability Plots



- $\Delta P/P = (P(fixed) P(normal))/P(normal)$
- Normal point:
 - NO, ssth23 = 0.50, δ_{CP} = 0, all others at nufit
- Fixed Points: All NO

	ss2th13	ssth23	$\delta_{\sf CP}$
1	0.088	0.50	-π/2
2	0.088	0.50	-π/4
3	0.088	0.58	-π/4
4	0.113	0.44	-π/4

• PMNS matrix:
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}}_{U_{\rm PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

• PMNS matrix:
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}}_{U_{\rm PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

 Assuming unitarity allows parameterization with familiar mixing angles/CP phase

• PMNS matrix: $\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

 $U_{\rm PMNS}$

- Assuming unitarity allows parameterization with familiar mixing angles/CP phase
- If unitarity, DUNE measures

• PMNS matrix:
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}}_{U_{\rm PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Assuming unitarity allows parameterization with familiar mixing angles/CP phase
- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ $= 4\cos^2\theta_{13}\sin^2\theta_{23}\left(1 - \cos^2\theta_{13}\sin^2\theta_{23}\right)$

• PMNS matrix: $\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

- Assuming unitarity allows parameterization with familiar mixing angles/CP phase
- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ = $4 \cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right)$
 - via v_e appearance: $4|U_{e3}|^2|U_{\mu 3}|^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$

 $U_{\rm PMNS}$

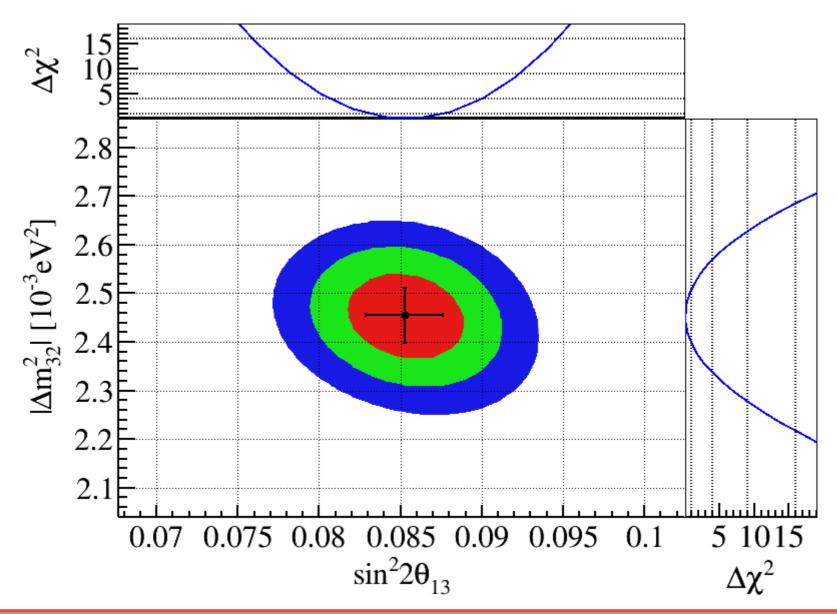
- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ = $4 \cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right)$
 - via v_e appearance: $4 |U_{e3}|^2 |U_{\mu 3}|^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$
- Daya Bay (reactor SBL) measures:
 - via $\overline{\mathsf{v}}_{\mathsf{e}}$ disappearance: $4\left|U_{e3}\right|^2\left(1-\left|U_{e3}\right|^2\right)=\sin^2 2\theta_{13}$

- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ = $4 \cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right)$
 - via v_e appearance: $4 |U_{e3}|^2 |U_{\mu 3}|^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$
- Daya Bay (reactor SBL) measures:
 - via $\overline{\mathsf{v}}_{\mathsf{e}}$ disappearance: $4\left|U_{e3}\right|^2\left(1-\left|U_{e3}\right|^2\right)=\sin^2 2\theta_{13}$
- DUNE and Daya Bay obtain independent measurements of θ_{13}

- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ = $4 \cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right)$
 - via v_e appearance: $4 |U_{e3}|^2 |U_{\mu 3}|^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$
- Daya Bay (reactor SBL) measures:
 - via $\overline{\mathsf{v}}_{\mathsf{e}}$ disappearance: $4\left|U_{e3}\right|^2\left(1-\left|U_{e3}\right|^2\right)=\sin^2 2\theta_{13}$
- DUNE and Daya Bay obtain independent measurements of θ_{13}
- If unitarity, θ_{13} measurements should agree

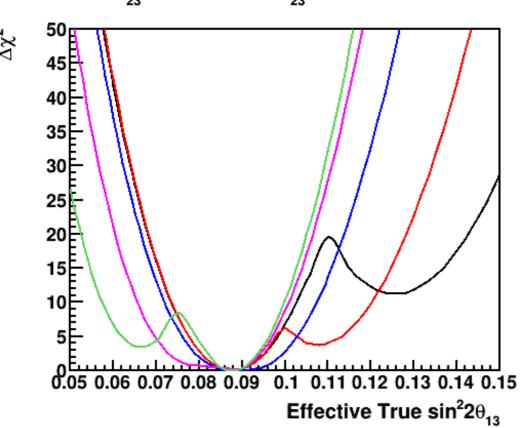
- If unitarity, DUNE measures
 - via v_{μ} disappearance: $4 |U_{\mu 3}|^2 \left(1 |U_{\mu 3}|^2\right)$ = $4 \cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right)$
 - via v_e appearance: $4 |U_{e3}|^2 |U_{\mu 3}|^2 = \sin^2 2\theta_{13} \sin^2 \theta_{23}$
- Daya Bay (reactor SBL) measures:
 - via $\overline{\mathsf{v}}_{\mathsf{e}}$ disappearance: $4\left|U_{e3}\right|^2\left(1-\left|U_{e3}\right|^2\right)=\sin^2 2\theta_{13}$
- DUNE and Daya Bay obtain independent measurements of θ_{13}
- If θ_{13} measurements are in tension, non-unitarity

Daya Bay's θ_{13} Measurement



DUNE's Sensitivity to PMNS Nonunitarity

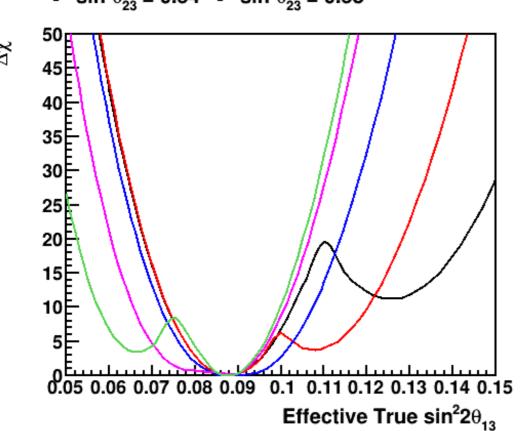
$$\begin{array}{c} - - \sin^2 \theta_{23} = 0.42 & - - \sin^2 \theta_{23} = 0.46 & - - \sin^2 \theta_{23} = 0.50 \\ - - - \sin^2 \theta_{23} = 0.54 & - - \sin^2 \theta_{23} = 0.58 \end{array}$$



- Asimov fits at 21 eff. true θ_{13} and 5 eff. true θ_{23} points.
 - $\Delta \chi^2$ is difference between θ_{13} penalty χ^2 and no penalty χ^2
- 1DOF $\Delta \chi^2$?
- Octant flip decreases sensitivity for
 - High θ_{13} , low θ_{23}
 - Low θ_{13} , high θ_{23}

DUNE's Sensitivity to PMNS Nonunitarity

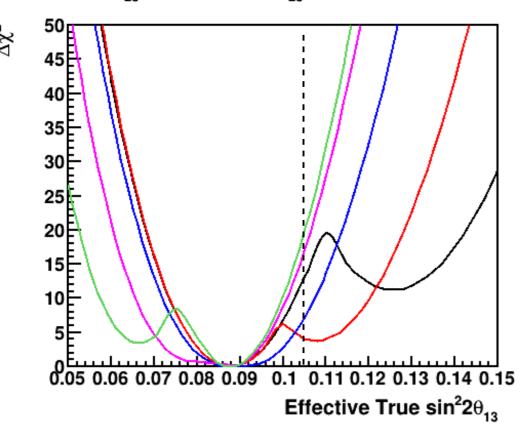
$$\begin{array}{c} - - \sin^2 \theta_{23} = 0.42 & - - \sin^2 \theta_{23} = 0.46 & - - \sin^2 \theta_{23} = 0.50 \\ - - - \sin^2 \theta_{23} = 0.54 & - - \sin^2 \theta_{23} = 0.58 \end{array}$$



- Octant flip asymmetry: higher sensitivity for high/low θ_{13}/θ_{23} than low/high θ_{13}/θ_{23}
- Higher sensitivity for non-maximal, non-octant-flipping θ_{23}

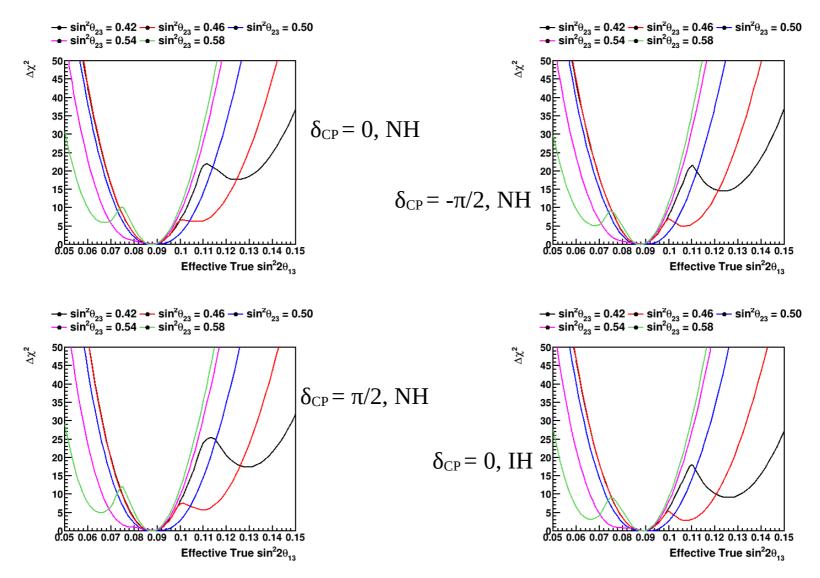
DUNE's Sensitivity to PMNS Nonunitarity

$$\begin{array}{c} - - \sin^2 \theta_{23} = 0.42 & - - \sin^2 \theta_{23} = 0.46 & - - \sin^2 \theta_{23} = 0.50 \\ - - - \sin^2 \theta_{23} = 0.54 & - - \sin^2 \theta_{23} = 0.58 \end{array}$$



- If T2K's center $(\sin^2 2\theta_{13} = 0.105)$ is accurate to accelerator LBL effective θ_{13} :
 - $2\sigma 4.5\sigma$ tension
 - Best case: highly non-maximal upper octant θ_{23}
 - Worst case: somewhat non-maximal lower octant θ_{23}

Sensitivity Largely Independent of $\delta_{\text{CP}}/\text{Mass}$ Hierarchy



Next Steps

- More thoroughly interpret $\Delta \chi^2$ of tension with Daya Bay
- Report accurate DUNE measurement resolutions for $\theta_{13},\,\theta_{23},\,\delta_{cp}$
- Add two fixed points to prob plots to show MO and δ_{CP} effect
- Compare single point throws and Asimov scan for δ_{CP} resolution
 - Degeneracy present in throws, not in Asimov scan
- Reproduce T2K JCP plots for DUNE

Conclusions

- DUNE's precision requires understanding correlations and degeneracies in 4D oscillation parameter space
 - Degenerate δ_{cp} and correlated $\theta_{13} \theta_{23}$
 - Investigated via single true point throws and scanning Asimov studies
- Exhibited DUNE's θ_{13} and θ_{23} resolution (with degeneracies) at 1000 ktMWyrs, δ_{CP} measurement resolution at 100, 250, and 1000 ktMWyrs
- Fixed point $\Delta P/P$ plots show wide energy spectrum critical to resolving $\theta_{13}-\theta_{23}$ degeneracy
- DUNE highly sensitive to an indirect test of PMNS non-unitarity when combined with Daya Bay's θ_{13} result
 - Highly dependent on true parameter values

Backups

Neutrino Mixing

• Can parameterize PMNS matrix assuming unitarity (big assumption):

$$U_{\text{PMNS}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{I}} \underbrace{\begin{pmatrix} c_{13} & 0 & e^{-i\delta_{\text{CP}}} s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{\text{CP}}} s_{13} & 0 & c_{13} \end{pmatrix}}_{\text{II}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{III}}$$

- Unitarity means only three flavor/mass states
- Non-unitarity → new physics!

Neutrino Oscillation

- DUNE can't measure these mixing parameters directly
- χ^2 fit used to obtain mixing parameters from appearance/disappearance measurements

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \qquad a = G_{F} N_{e} / \sqrt{2}$$

$$\Delta_{ij} = \Delta m_{ij}^{2} L / 4E_{\nu}$$

Neutrino Oscillation

- DUNE can't measure these mixing parameters directly
- χ^2 fit used to obtain mixing parameters from appearance/disappearance measurements
- Parameter dependencies can lead to errors in fits (oops!)

$$P(\nu_{\mu} \to \nu_{e}) \simeq \frac{\sin^{2}\theta_{23} \sin^{2}2\theta_{13}}{(\Delta_{31} - aL)^{2}} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \qquad a = G_{F} N_{e} / \sqrt{2}$$

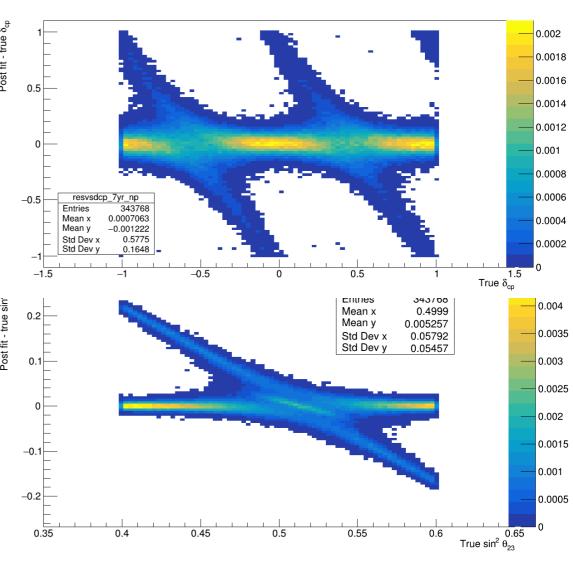
$$\Delta_{ij} = \Delta m_{ij}^{2} L / 4E_{\nu}$$

Parameter Correlations and Degeneracies: Why Do We Care?

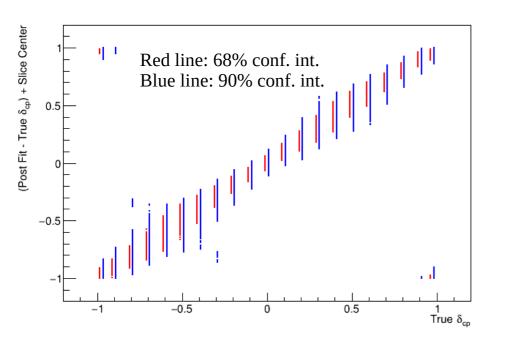
- DUNE will have the ability to make precision measurements of these parameters, including the level of charge-parity (CP) violation for leptons.
- Previous measurements of oscillation parameters have been treated independently, omitting possible correlations that become significant as experimental precision increases.
- Understanding how DUNE fits of oscillation parameters are affected by these correlations enables more accurate evaluation of DUNE measurement resolutions and sensitivity to new physics.

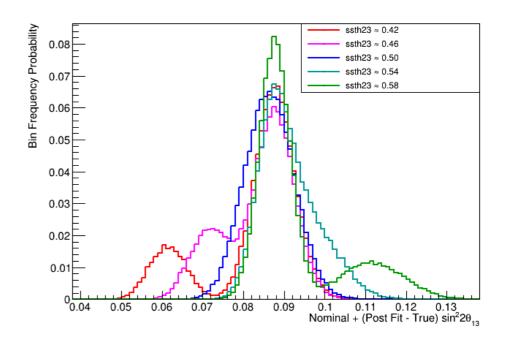
Correlations/Degeneracies: TDR Analysis

- Resolution plots using long baseline (LBL) technical design report (TDR) analysis data
- Simulated experiments
 (pseudo-experiments) for
 different sets of true
 parameter values, post fit
 (pf) parameter values
 generated for each set
- TOP: δ_{cp} pf true vs true
- BOTTOM: $\sin^2\theta_{23}$ pf true vs true



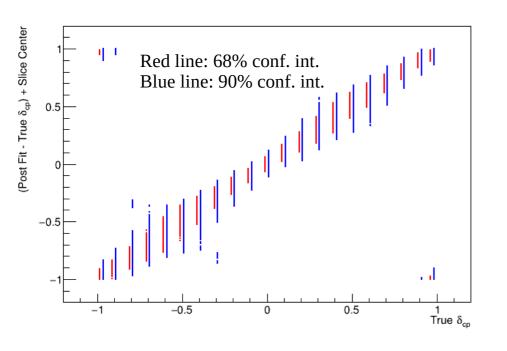
Correlations/Degeneracies: TDR Analysis

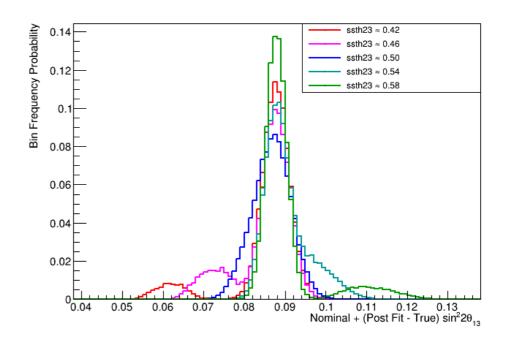




- δ_{cp} degeneracy captured at 90% near true values of -0.8 π , -0.7 π , -0.4 π , -0.3 π
- θ_{13} "error mode" significance/position depends on θ_{23}

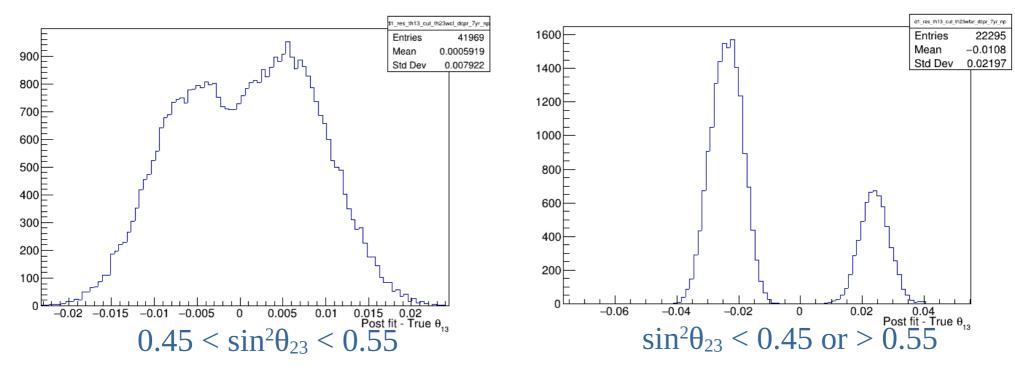
Correlations/Degeneracies: TDR Analysis





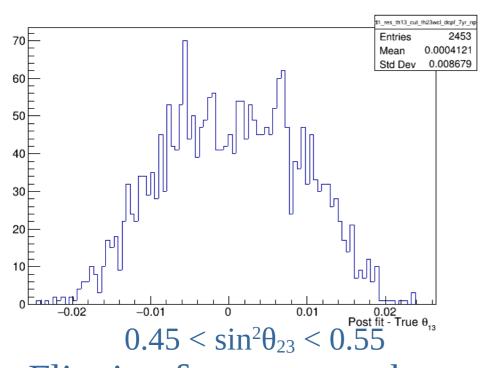
- δ_{cp} degeneracy captured at 90% near true values of -0.8 π , -0.7 π , -0.4 π , -0.3 π
- θ_{13} "error mode" significance/position depends on θ_{23} and exposure

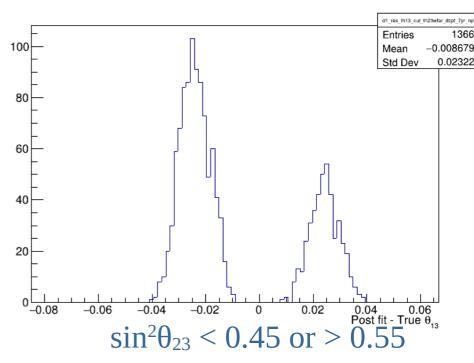
θ_{23} octant flip effect on θ_{13}



- Above: θ_{13} Post fit true distributions, θ_{23} measured in wrong octant
- θ_{23} octant error leads to bimodality in θ_{13} measurement
- Less maximal θ_{23} = greater bimodality
- Asymmetry between modes on right plot: what favors under- vs over-estimation?

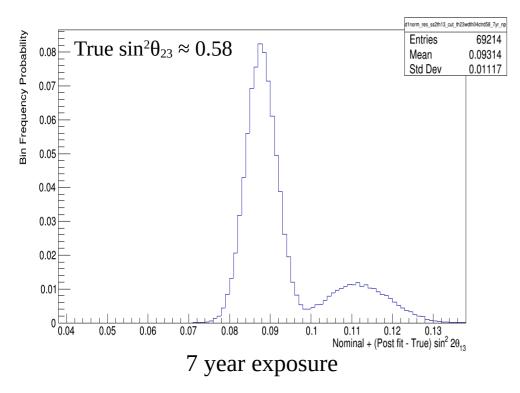
δ_{cp} effect?

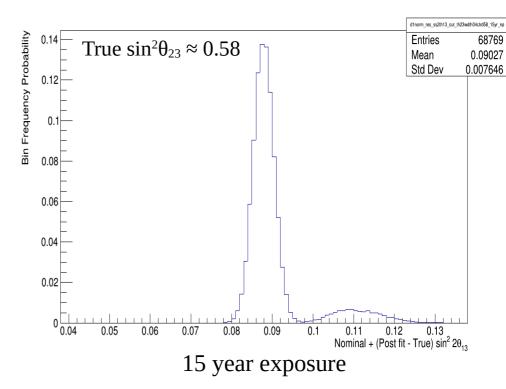




- Flipping δ_{cp} appears to be uncorrelated with θ_{13} measurement
- δ_{cp} degeneracy appears to be independent of θ_{13} - θ_{23} correlation

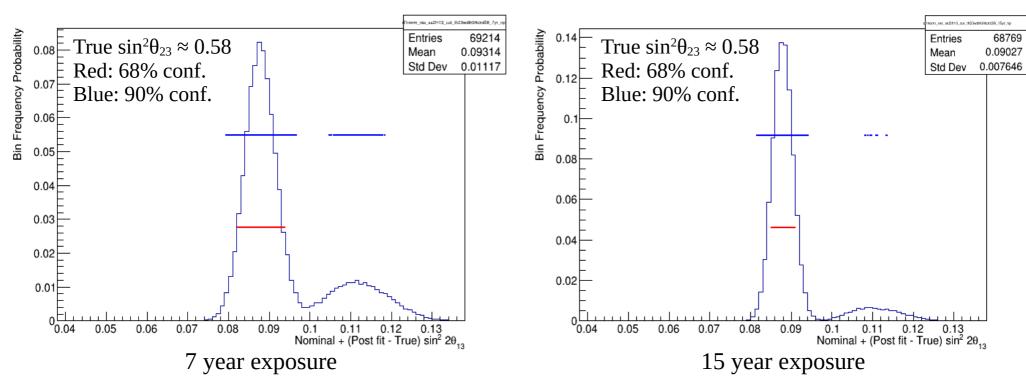
θ_{23} octant flip effect on θ_{13}





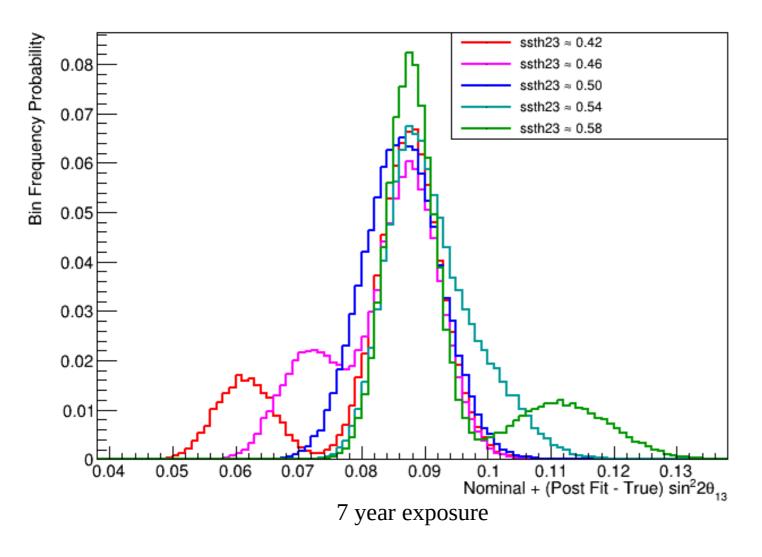
- $\sin^2 2\theta_{13}$ post fit distribution shown at fixed $\sin^2 \theta_{23} \approx 0.58$.
- Underestimated $\sin^2\theta_{23}$ corresponds to overestimated $\sin^22\theta_{13}$, gap between modes due to disfavored maximal θ_{23}
- Increasing exposure decreases octant error significance

θ_{23} octant flip effect on θ_{13}



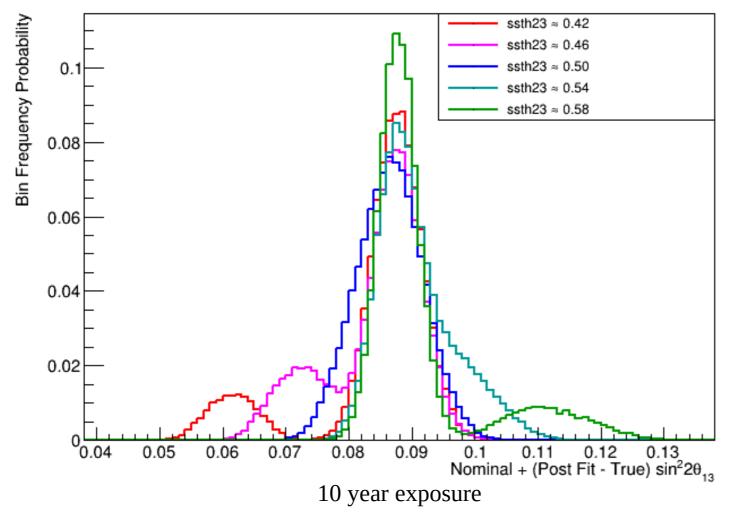
- $\sin^2 2\theta_{13}$ post fit distribution shown at fixed $\sin^2 \theta_{23} \approx 0.58$.
- Underestimated $\sin^2\theta_{23}$ corresponds to overestimated $\sin^22\theta_{13}$, gap between modes due to disfavored maximal (~0.5) $\sin^2\theta_{23}$
- Increasing exposure decreases octant error significance

PF θ_{13} distribution depends on θ_{23}



- Narrower true mode peak, greater true-error mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

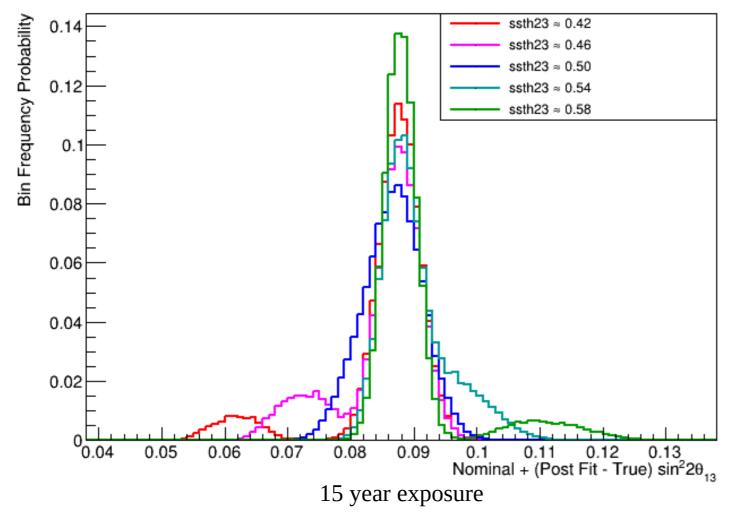
PF θ_{13} distribution depends on θ_{23}



Relative size of error mode decreases with exposure

- Narrower true mode peak, greater true-error mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

PF θ_{13} distribution depends on θ_{23}



Relative size of error mode decreases with exposure

- Narrower true mode peak, greater true-error mode separation at non-maximal θ_{23}
- Broader true mode peak, no bimodality at maximal θ_{23}

New Physics? PMNS Non-unitarity

- PMNS matrix parameterized under assumption of unitarity
- Non-unitarity → More neutrino states → physics beyond SM
- If PMNS is non-unitary, θ_{13} becomes an effective mixing angle
 - Different measurements may yield different values
- Comparing DUNE's precision θ_{13} measurement to Daya Bay's may amount to an indirect test of PMNS non-unitarity

Neutrino Mixing

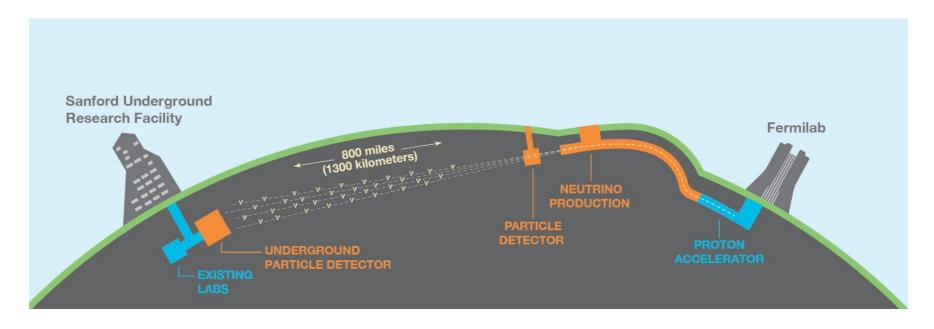
• Can parameterize PMNS matrix:

$$U_{\text{PMNS}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{I}} \underbrace{\begin{pmatrix} c_{13} & 0 & e^{-i\delta_{\text{CP}}} s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{\text{CP}}} s_{13} & 0 & c_{13} \end{pmatrix}}_{\text{II}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{III}}$$

- Unitarity means only three Havor/mass states
- Non-unitarity → new physics!
- DUNE (accelerator experiment) can measure blue highlighted parameters

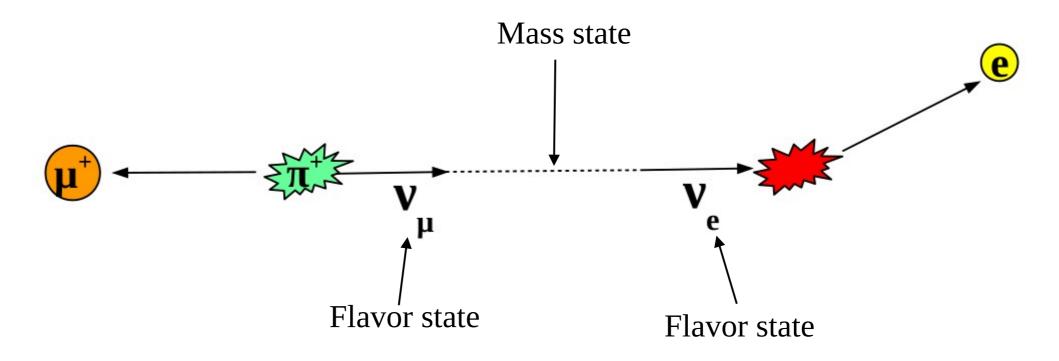
The DUNE Experiment

- Deep Underground Neutrino Experiment
- Large international collaboration aiming to make precise measurements of neutrino oscillation parameters
- Accelerator neutrino experiment with near and far detectors



Neutrino Oscillation/Mixing

• Neutrinos Mix! Created and destroyed in flavor states but propagate in mass states:



Neutrino Oscillation/Mixing

- Neutrinos Mix! Created and destroyed in flavor eigenstates but propagate in mass eigenstates
- Mixing described by PMNS Matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
 Flavor States
$$U_{\rm PMNS} \qquad \text{Mass States}$$

The Mixing Matrix

• Can parameterize PMNS matrix:

$$U_{\text{PMNS}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{I}} \underbrace{\begin{pmatrix} c_{13} & 0 & e^{-i\delta_{\text{CP}}} s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{\text{CP}}} s_{13} & 0 & c_{13} \end{pmatrix}}_{\text{II}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{III}}$$

$$c_{ij} = cos\theta_{ij}, s_{ij} = sin\theta_{ij}$$

Assumes only three flavor/mass states

The Mixing Matrix

• Can parameterize PMNS matrix:

$$U_{\text{PMNS}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{I}} \underbrace{\begin{pmatrix} c_{13} & 0 & e^{-\sqrt[3]{c_{P}}} s_{13} \\ 0 & 1 & 0 \\ -e^{\sqrt[3]{c_{P}}} s_{13} & 0 & c_{13} \end{pmatrix}}_{\text{II}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{III}}$$

$$c_{ij} = cos\theta_{ij}, s_{ij} = sin\theta_{ij}$$

Assumes only three flavor/mass states

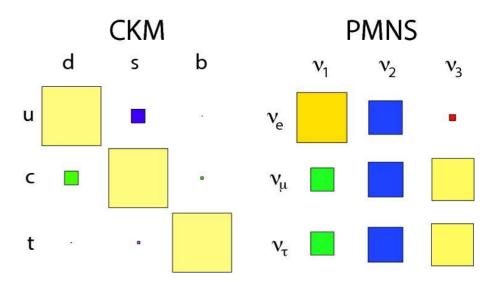
• DUNE will measure θ_{13} , θ_{23} , δ_{CP}

Why Measure δ_{CP} ?

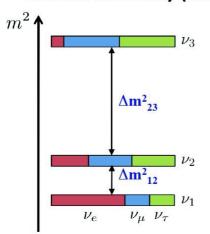
- δ_{CP} = charge-parity (CP) violation in lepton sector
- CP symmetry = invariant physics when mirroring space and reversing charge
- CP violation could explain matter-antimatter asymmetry
- Lepton CP violation not known

Why Measure θ_{13} and θ_{23} ?

- Increase precision of PMNS element measurements
 - Why are CKM and PMNS matrices so different?
 - Is there a μ-τ mixing symmetry?
- Physics beyond the Standard Model



normal hierarchy (NH)



inverted hierarchy (IH)



Neutrino Oscillation Probabilities

- DUNE can't measure oscillation parameters directly
- Instead measures **oscillation probabilities**, which depend on the parameters in a complicated way:

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \qquad a = G_{F} N_{e} / \sqrt{2}$$

$$\Delta_{ij} = \Delta m_{ij}^{2} L / 4E_{\nu}$$

Nei

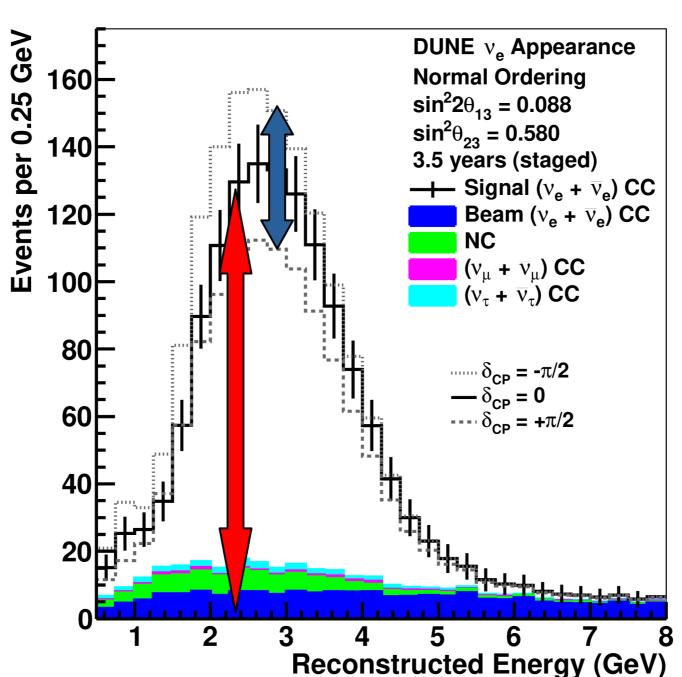
$\sin^2\theta_{23}\sin^22\theta_{13}$ δ_{CP}

ies

DUN

Inste depe

 $P(\nu_{\mu} \to \nu_{e})$



rectly

h

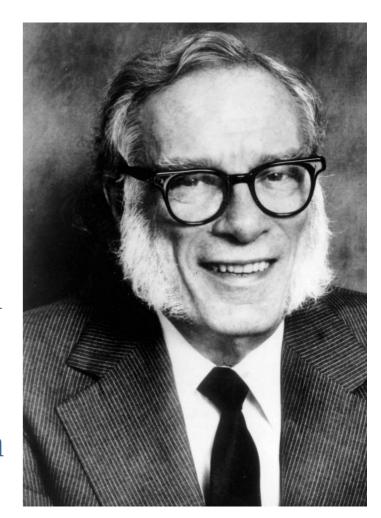
$$\Delta_{31} + \delta_{CP}$$

$$\sqrt{2}$$

$$4E_{\nu}$$

Asimov Studies

- Fix "Asimov" point of true parameters
- All systematics nominal, exposure 1000 ktMWyrs
- Pick up to two parameters to "scan" (fix away from their true values) and calculate the scan χ^2 at each scan point
- Take the difference between the scan χ^2 and the global χ^2 to find $\Delta \chi^2$ and calculate confidence intervals



Neutrino Oscillation Probabilities

0.55

0.45

- Complicated parameter dependencies lead to degeneracies and correlations
 - e.g. θ_{13} - θ_{23} correlation

resulting from leading term dependence
$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \frac{\sin^{2}\theta_{23}\sin^{2}2\theta_{13}}{(\Delta_{31} - aL)^{2}} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} \qquad \sin^{2}2\theta_{13}$$

$$+ \sin 2\theta_{23}\sin 2\theta_{13}\sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21}\cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23}\sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2} \qquad a = G_{F}N_{e}/\sqrt{2}$$

$$\Delta_{ij} = \Delta m_{ij}^{2}L/4E_{\nu}$$

Sources of Degeneracy

- θ_{13} - θ_{23} : v_e appearance dependence on product $\sin^2\theta_{23}\sin^22\theta_{13}$ leads to anti-correlation
 - v_{μ} constraint on $\sin^2 2\theta_{23}$ not $\sin^2 \theta_{23}$ (for low θ_{13})

$$P(\overline{\nu}_{\mu} \to^{(\overline{\nu}_{\mu})}) \simeq 1 - 4\cos^{2}\theta_{13}\sin^{2}\theta_{23}$$

$$\times (1 - \cos^{2}\theta_{13}\sin^{2}\theta_{23}) \approx 1 - \sin^{2}2\theta_{23}\sin^{2}\Delta_{atm}$$

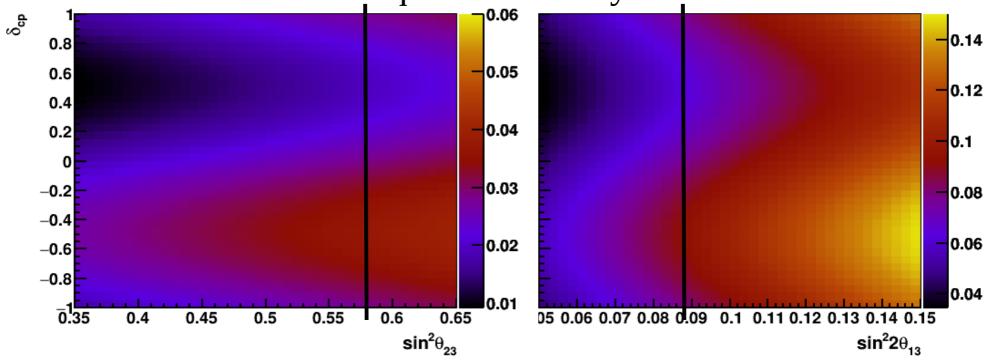
$$\times \sin^{2}\Delta_{atm}$$

• Sine dependence at flux peak (
$$\Delta_{31} = \pi/2$$
)
$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

$$+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}$$

Contours of Equal Probability at Flux Peak



• δ_{CP} : sine dependence at flux peak ($\Delta_{31}=\pi/2$)

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \frac{\sin(aL)}{aL} \Delta_{21} \underbrace{\cos(\Delta_{31} + \delta_{CP})}_{+ \cos^{2}\theta_{23} \sin^{2}\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}}_{-(aL)^{2}}$$

