

Higgs boson production in weak boson fusion at high precision

Konstantin Asteriadis | 09/08/2022 Fermi National Accelerator Laboratory – Theory Seminar

Higgs-boson production in vector-boson fusion (VBF)

- Important production channel of Higgs boson @LHC (second highest cross section @14TeV)
- Probes electro-weak sector
- Very distinct signature

VBF signature

- Typical VBF cuts: at least 2 resolved "tag" jets with $p_{\perp,j} > 25 \,\text{GeV}$ and $-4.5 < y_j < 4.5$
 - Separated in rapidity $|y_{j_1} y_{j_2}| > 4.5$ and in different hemispheres $y_{j_1} \times y_{j_2} < 0$
 - Invariant mass $\sqrt{(p_{j_1} + p_{j_2})^2} > 600 \,\mathrm{GeV}$
 - Jets identified using anti-kt jet-algorithm with R = 0.4
- Experimentally measured with 10 20% accuracy \rightarrow few percent with HL-LHC
- What can we do with this experimental precision and more important: are we ready for it?

Higher order QCD correction to vector-boson fusion

- 2 classes of corrections to the amplitude squared: *factorizable* and *non-factorizable*
- Examples for *factorizable* corrections

• Non-factorizable correction not present at NLO QCD due to colour conservation $\sim Tr(T^a) = 0$

4 Higgs boson production in weak boson fusion at high precision Konstantin Asteriadis

Non-factorizable corrections to VBF

- Non-factorizable two loop contributions at NNLO are colour suppressed $\sim \frac{1}{N_c^2} \approx \frac{1}{10}$
 - Not feasible to compute exact (2-loop, 5-point function with 2 scales) with current loop-technology
 - In certain regions of the phase space enhanced by $\pi^2 \approx 10$ (Glauber phase) [Liu, Melnikov, Penin '19]

More exotic contributions in case of identical flavours are not only colour suppressed but also suppressed by large momentum transfer in the weak-boson propagators [Bolzoni et al. '11]

- · First studies [Dreyer, Karlberg, Tancredi '20; Chen, Figy, Plätzer '21]
- Include contributions at least in enhanced (forward) regions of the phase space (work in progress)

Factorizable corrections to VBF and state of the art of QCD analysis

٠

 $(Deep inelastic scattering)^2$

• Inclusive known till N³LO [Dreyer, Karlberg 2016]

.

- Nicely converging, N³LO within residual scale uncertainties
- Fully differential known till NNLO
 [Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015]
 [Cruz-Martinez, Glover, Gehrmann, Huss 2018]
 - **Fiducial cuts:** NNLO corrections outside of residual NLO scale uncertainties

- Standard model with two identical but non-interacting QCD
 - Effectively DIS scattering of two protons
 - DIS well studied \rightarrow possibility to use existing results
 - \rightarrow Factorizable corrections well studied?

State of the art of QCD analysis

- Non-trivial jet dynamics in VBF Higgs boson poduction
- All current computations are for stable Higgs boson production
 - \rightarrow Effects of additional jets from Higgs decay?

Anomalous Higgs couplings and fiducial cuts

- Anomalous weak couplings of the Higgs boson
- Higgs coupling to weak bosons measured to O(30%)
- Studied at NLO QCD [Hankele, Klämke, Zeppenfeld '06]
 - Inclusive N³LO covered by NNLO result, but NNLO not by NLO (differential even worse)
 - New operators \rightarrow new tensor structures (interplay with real radiation?)
 - \rightarrow Can we trust an NLO analysis?
- Can NNLO accuracy help to distinguish SMEFT from SM?
- Traditional SMEFT approach: "bottom-up" Start with higher dimesnional operators and add more and more SM
- To address above questions here instead: "top-down" Start with best SM description and add a little bit of SMEFT

Realistic final states

JHEP 02 (2022) 046 in collaboration with Fabrizio Caola, Kirill Melnikov, Raoul Röntsch

Detecting WBF through realistic final states

- $H \rightarrow b\overline{b}$ and $H \rightarrow WW^* \rightarrow 2l \ 2\nu$
- Highest branching ratios
- Both studied by ATLAS and CMS [e.g. Eur. Phys. J. C 81, 537 (2021); Phys. Lett. B 791, 96 (2019)]
- Doing this at NNLO QCD naively simple, in practice very complicated

NNLO QCD Higgs boson production + Higgs boson decay

- In this combination, each decay channel comes with its unique challenges:
 - $H \rightarrow b\overline{b}$: for now only at LO but non-trivial interplay between partonic jets from production and decay when fiducial cuts are applied
 - $H \to WW^* \to 2l \ 2\nu$: up to 21 dimensional phase space integration that is numerically very challenging
- Side note: Good control on complex final state coming from decay crucial for computing radiative corrections to $H \rightarrow b\overline{b}$ decay channel
- In what follows: focus on $H \to b\overline{b}$ decay channel (details on $H \to WW$ in *JHEP02(2022)046*)

WBF + H \rightarrow bb decay

• Narrow width approximation \rightarrow factorization of on-shell Higgs production and on-shell Higgs decay

• Several effects break factorization of production and decay process. For example

- Impact of decay on NNLO corrections is non-trivial \rightarrow effects might not be captured by a simple reweighing
- We don't expect this effects to be very large but it is important to quantify their size
- Finally: cuts on b-jets may change fiducial WBF region

Physical setup

- Only *factorizable* contributions
- 13 TeV center-of-mass energy / NNPDF31-nnlo-as-118 (different PDF choices not studied yet)
- Scale choice [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15; Cruz-Martinez, Glover, Gehrmann, Huss '18]

$$\mu_0 = \sqrt{\frac{m_h}{2}\sqrt{\frac{m_H^2}{4} + p_{\perp,H}^2}}$$

- Effects of other scale choices, e.g. $\mu_R^1 = \mu_F^1 = \sqrt{-q_1^2} / \mu_R^2 = \mu_F^2 = \sqrt{-q_2^2}$, not studied yet
- Results of today for bb decay are a first non-trivial step:
 - Massless b quarks and decay @LO QCD
 - Production process is flavour "blind"
- Cuts on b-jets; loosely following latest ATLAS measurement [Eur. Phys. J. C 81, 537 (2021)]
 - 2 resolved b-jets
 - $p\perp$,jb > 65 GeV
 - |yjb| < 2.5

 q_1

 $|q_2|$

Results: fiducial cross section

• Sizable fiducial cross section, O(100 000) events with HL-LHC

$$\sigma_{\rm LO}^{b\bar{b}} = 75.9^{-5.6}_{+6.5} \text{ fb} \,, \quad \sigma_{\rm NLO}^{b\bar{b}} = 70.9^{+0.2}_{-1.2} \text{ fb} \,, \quad \sigma_{\rm NNLO}^{b\bar{b}} = 69.4^{+0.5}_{-0.2} \text{ fb}$$

• Comparison to stable Higgs results

• *Noteworthy features:* smaller residual scale uncertainty and better perturbative convergence compared to stable Higgs production

Results: fiducial cross section

• Sizable fiducial cross section, O(100 000) events with HL-LHC

$$\sigma_{\rm LO}^{b\bar{b}} = 75.9^{-5.6}_{+6.5} \text{ fb}, \quad \sigma_{\rm NLO}^{b\bar{b}} = 70.9^{+0.2}_{-1.2} \text{ fb}, \quad \sigma_{\rm NNLO}^{b\bar{b}} = 69.4^{+0.5}_{-0.2} \text{ fb}$$

• Comparison to stable Higgs results

• *Noteworthy features:* smaller residual scale uncertainty and better perturbative convergence compared to stable Higgs production

Results: fiducial cross section

• Simple reason: pt cuts on b-jets ($p_{\perp,j_b} > 65 \,\text{GeV}$) preferentially selects events with high Higgs transverse momentum

- NLO corrections are rather flat \rightarrow moderate effect
- For pt > 130 GeV NNLO corrections are smaller and within residual scale uncertainty band
- Check: Stable Higgs production with additional pt cut $p_{\perp,H} > 150 \,\text{GeV}$

$$\frac{\sigma_{\rm NNLO}^{H}}{\sigma_{\rm LO}^{H}} = 0.89 \qquad \text{Higgs pt cut} \qquad \frac{\sigma_{\rm NNLO}^{H}}{\sigma_{\rm LO}^{H}} = 0.91 \qquad \text{including decay} \qquad \frac{\sigma_{\rm NNLO}^{b\bar{b}}}{\sigma_{\rm LO}^{b\bar{b}}} = 0.914(2)$$

Higgs boson production in weak boson fusion at high precision Konstantin Asteriadis

Results: differential cross sections

- Shapes of NLO distributions **not affected** by NNLO corrections
- Simple reweighting possible as long as NNLO/NLO K-factor is computed with a proper cut on the pt of the stable Higgs boson

Outlook: Towards a more realistic setup

- $H \to b\overline{b}$ @LO (and $H \to WW \to 2l \ 2\nu$) as prototypes for $H \to b\overline{b}$ @ NNLO QCD
- Fully-differential description of $H \rightarrow b\overline{b}$ decay at NNLO QCD (with massive b-quarks) is known [Bernreuther, Chen, Si '2018; Behring, Bizoń '19]
- Add flavor tagging in WBF Higgs boson production process

Anomalous Higgs boson weak couplings

arXiv:2206.14630 [hep-ph] in collaboration with Fabrizio Caola, Kirill Melnikov, Raoul Röntsch

Anomalous HVV interactions

• Most general tensor structure of the HVV vertex (Lorentz invariance / Bose symmetry)

$$\begin{array}{rcl}
H & & p_{1} \\
\hline
p_{1} & & V_{\mu} &= i \left[g^{\mu\nu} A(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) + p_{1}^{\nu} p_{2}^{\mu} B(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) + i \epsilon^{\mu\nu\rho\sigma} p_{1,\rho} p_{2,\sigma} C(p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}) \right] \\
\hline
\bar{V}_{\nu} & & V_{\mu} &= i \left[g^{(SM)}_{HVV} \left[g^{\mu\nu} \left(1 + \left[\frac{m_{H}^{2}}{\Lambda^{2}} c_{HVV}^{(2)} + \left[\frac{p_{1}^{2} + p_{2}^{2}}{\Lambda^{2}} c_{HVV}^{(1)} \right] + \frac{2p_{1}^{\nu} p_{2}^{\mu}}{\Lambda^{2}} c_{HVV}^{(1)} - \left[\tilde{c}_{HVV} (6\pi) \epsilon^{\mu\nu\rho\sigma} \frac{p_{1,\rho} p_{2,\sigma}}{\Lambda^{2}} \right] \right] \\
& & \text{``rescaling'' of SM} & \text{CP-even coupling} & \text{CP-odd coupling}
\end{array}$$

- (6 π) in CP-odd contribution such that $\widetilde{c}_{HVV} = 1 \rightarrow O(1\%)$ deviation of the LO fiducial cross section
- Consider "symmetric" model where non-SM couplings to W and Z are identical (main difference accounted for via factoring out SM coupling)

Fiducial cross section at any order

$$\sigma_{\rm fid} = \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right)^2 X_1 + \left(c_{HVV}^{(1)}\right)^2 X_2 + \left(\tilde{c}_{HVV}\right)^2 X_3 + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) c_{HVV}^{(1)} X_4 \\ + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) \tilde{c}_{HVV} X_5 + c_{HVV}^{(1)} \tilde{c}_{HVV} X_6 \,.$$

where

$$X_i = X_i^{\rm LO} + \frac{\alpha_s}{4\pi} X_i^{\rm NLO} + \left(\frac{\alpha_s}{4\pi}\right)^2 X_i^{\rm NNLO} + \mathcal{O}(\alpha_s^3)$$

- $X_5 = X_6 = 0$ for fiducial cross sections because it is integrate over the full angular phase space
- Compute $X_{1,2,3,4}$ individually

Fiducial cross section at any order

$$\sigma_{\rm fid} = \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right)^2 X_1 + \left(c_{HVV}^{(1)}\right)^2 X_2 + \left(\tilde{c}_{HVV}\right)^2 X_3 + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) c_{HVV}^{(1)} X_4 \\ + \left(1 + \frac{m_H^2}{\Lambda^2} c_{HVV}^{(2)}\right) \tilde{c}_{HVV} X_5 + c_{HVV}^{(1)} \tilde{c}_{HVV} X_6 \,.$$

• Results

$\sigma_{\rm fid}~({\rm fb})$	LO	NLO	NNLO
X_1	971_{+69}^{-61}	890^{+8}_{-18}	859^{+8}_{-10}
X_2	$0.413^{-0.033}_{+0.039}$	$0.398\substack{+0.001\\-0.005}$	$0.383\substack{+0.004\\-0.005}$
X_3	$19.57_{+2.22}^{-1.84}$	$19.64_{-0.07}^{-0.25}$	$19.25\substack{+0.08 \\ -0.18}$
X_4	$26.43^{-1.61}_{+1.80}$	$23.45_{-0.66}^{+0.35}$	$22.53_{-0.42}^{+0.39}$

- X₁ largest (by construction since it corresponds to the SM contribution)
- Large scale uncertainty decrease from LO \rightarrow NLO; relatively stable from NLO \rightarrow NNLO
- Similar k-factors for all $X_{1,2,3,4} (\sim -4\% \text{ from NLO} \rightarrow \text{NNLO})$
- Having $X_{1,2,3,4}$ available allows to study the allowed parameter space

Allowed parameter space: fiducial cross section

• Similar results for all pairs of anomalous couplings

Differential distributions

- Computing differential distributions is numerically expensive
- Hence instead of computing differential coefficients $X_{1,2,3,4,5,6}$ we consider two fixed scenarios

Sce. A:
$$c_{HVV}^{(1)} = +1.5$$
, $c_{HVV}^{(2)} = -1.9$, $\tilde{c}_{HVV} = +0.6$
Sce. B: $c_{HVV}^{(1)} = -1.8$, $c_{HVV}^{(2)} = -0.1$, $\tilde{c}_{HVV} = -1.5$

• They are chosen such that fiducial cross section are indistinguishable

$\sigma_{\rm fid}~({\rm fb})$	SM	Sce. A	Sce. B	
LO	971_{+69}^{-61}	960_{+68}^{-61}	965_{+71}^{-63}	
NLO	890^{+8}_{-18}	882^{+7}_{-17}	890^{+6}_{-17}	
NNLO	859^{+8}_{-10}	851^{+9}_{-8}	860^{+8}_{-8}	
$\leq 1\%$ and covered by				
residual scale uncertainties				

Differential distributions

- Most distributions are **NOT** sensitive to anomalous couplings [Hankele, Klämke, Zeppenfeld '06]
- For example consider Higgs transverse momentum distribution

start of diverging distributions, expected but cross section already down by an order

$\Delta \varphi\,$ a CP sensitive observable

- At LO: Sce. B and SM distinguishable, Sce. A and SM just covered by scale variation
- Similar to fiducial cross section: no significant reduction of scale uncertainties from NLO \rightarrow NNLO
- In this distributions CP-odd / CP-even interference (dim-6) is the dominant contribution

$\Delta \varphi\,$ a CP sensitive observable

- K-factor rather flat and almost independent of anomalous couplings
- K-factors rather flat \rightarrow global rescaling from NLO to NNLO should be sufficient for O(1%)

$\Delta \varphi\,$ a CP sensitive observable

- Ratio of events with $\Delta \varphi < 0$ and $\Delta \varphi > 0$ might be useful to include differential data in exclusion plots in a efficient way (cut-and-count approach)
- Deviation(s) from SM dominated by antisymetric contributions \rightarrow CP-odd / CP-even interference
- To study CP-even couplings, consider absolute value of $\Delta \phi$ where CP-odd / CP-even interference again drops out

 $|\Delta \varphi|$ a CP insensitive observable

• At LO differences are swamped by scale uncertainty

- Starting from NLO scale uncertainties sufficiently reduced to distinguish between different scenarios and SM; NNLO might help to distinguish from SM
- Ratio of events with $|\Delta \varphi| < \pi/2$ and $|\Delta \varphi| > \pi/2$ might be useful to include differential data in exclusion plots in a efficient way (cut-and-count approach)

- K-factor rather flat and almost independent of anomalous couplings
- K-factors rather flat \rightarrow global rescaling from NLO to NNLO should be sufficient for O(1%)

Conclusion and Outlook

- WBF including $H \rightarrow b\overline{b}$ decay
 - Non-trivial interplay from jets in production and decay processes
 - Changes in higher order corrections due to cuts on b-jets are comparable to NNLO corrections
 - Smaller residual scale uncertainty / better perturbative convergence
 - Future work: Include decay $H \rightarrow b\bar{b}$ massive @ NNLO [Bernreuther, Chen, Si '18; Behring, Bizoń '19]
- WBF including $H \to WW^* \to 2l \ 2v \ decay$ (Not presented in this talk) Effects of decay small and higher order corrections well captured by simple reweighting (with K-factors computed from stable Higgs boson production)

• Anomalous weak couplings of the Higgs boson

- Higher order corrections in SMEFT scenarios similar to SM \rightarrow No significant shape change from NLO \rightarrow NNLO \rightarrow May be captured with global K-factor
- NLO and NNLO have similar "discriminating power" \rightarrow NNLO sutdy indicates analysis at NLO is robust
- Future work: Include differential data into exclusion plots
- **Future work:** Include higher order operators (In particular once that are directly affected by QCD) radiation; allow for different HZZ and HWW couplings