Electroweak baryogenesis from a Naturally Light Singlet Scalar

Isaac R. Wang Ph.D Candidate, Rutgers University *Collaborator: Keisuke Harigaya*

Based on: 2207.02867 and future work

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- Naturally light extra scalar model
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- Naturally light extra scalar model
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

Matter-Antimatter Asymmetry The "baryogenesis" problem

matter > anti-matter \bullet

• Define $n_B = n_{\text{baryon}} - n_{\text{anti-baryon}}$

• $\Omega_b h^2 \simeq 0.022, \frac{n_B}{s} \simeq 9 \times 10^{-11}$

• What's the origin?

Planck 2018b

Necessary conditions for baryogenesis The Sakharov condition

• Baryon number violation: the one we want!

SM: sphaleron process

- Out of thermal equilibrium: produced number won't go back! SM: ?

• C and CP violation: anti-particle process won't cancel what we get! SM: CKM (too small), or UV scale new physics, model dependent.

[Sakharov, 1967]

Bviolation: sphaleron

• *B* and *L* symmetry is broken at the quantum level. This violation is via sphaleron process.

•
$$\partial_{\mu}J^{B}_{\mu} = \partial_{\mu}J^{L}_{\mu} = \frac{3g^{2}}{32\pi^{2}}W\tilde{W}$$

• B - L is conserved.

[G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976)]

Electroweak phase transition (EWPT) Well-known option for out-of-equilibrium condition

Higgs potential

$$T = 0: V = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4$$

T > 0: receive finite temperature correction. Very high *T*: "symmetry restoration" T_c : h = 0 and h = v degenerate, "critical temperature"

Figure from: [J Cline: hep-ph/0609145]

EWPT: 1st order vs 2nd order

1st order: clear, well-defined barrier 2nd order: smooth crossover.

1st-order PT processes via bubble nucleation

Figure from: [J Cline: hep-ph/0609145]

Electroweak baryogenesis from 1st order EWPT

broken phase

Sphaleron rate in the bubble: $\Gamma_{\rm sph} \sim \exp(-E_{\rm sph}/T), E_{\rm sph} \propto \frac{4\pi v}{g},$

suppressed by *v* Need to be turned off inside the bubble! Sphaleron rate: $\Gamma_{\rm sph} \simeq 20 \alpha_W^5 T^4$

> CP violation evolves, creates non-zero B

> > unbroken phase

Wall profile

[F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30, 2212]
[V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985)]
[M. E. Shaposhnikov, JETP Lett. 44, 465 (1986),Nucl. Phys. B 287, 757 (1987)]
[A. G. Cohen, D. B. Kaplan and A. E. Nelson,hep-ph/9302210]
[D'Onofrio et al: 1404.3565]

Sphaleron suppression: Strong 1st-order EWPT (SFOPT) (1) Sphaleron decoupling inside bubble

 $\Gamma_{\rm sph} \sim \exp(-E_{\rm sph}/T), E_{\rm sph} \propto \frac{4\pi v}{g},$ Need to turn this off inside the bubble: decoupling Require: large $\frac{v(T)}{T}$ at the phase transition Typical condition: $\frac{v(T)}{T} \ge 1$

Intuition: v(T) should be far away. equivalent: we need a higher barrier.

Need effective potential to compute this

Sphaleron suppression: Strong 1st-order EWPT (SFOPT) (2) thermal phase transition

- At $T = T_c$, two minima degenerate.
- Thermal transition becomes allowed by energy.
- Transition rate: $\Gamma \simeq T^4 \exp(-S_3/T)$, 3d action.

$$S_3 \equiv \int r^2 \left(\frac{1}{2} \left(\frac{d\phi}{dr}\right)^2 + V(\phi)\right) dr$$
, decrease as unities

cools down. r: radius of the 3d space along the solution.

• Transition happens when $\Gamma/H^3 \simeq H$, the Hubble rate. Then bubble nucleates.

• Transition happens at nucleation temperature T_n

verse

Typically (not supercooling):

Require this to be > 1 for SFOPT

Sphaleron suppression: Strong 1st-order EWPT (SFOPT) (3) Thermal potential at 1-loop

- Finite-T: thermal correction to the effective potential V. 0
- Boson contribution: $\frac{T^4}{2\pi^2}n_B(\frac{\pi^2}{12}(\frac{m}{T})^2 \frac{\pi}{6}(\frac{m}{T})^3 + \dots), n_B: \text{ degree of freedom}$
- Fermion contribution: $\frac{T^4}{2\pi^2} n_F(\frac{\pi^2}{2\Lambda}(\frac{m}{T})^2 + \dots), n_F: \text{ degree of freedom.}$
- Total: $V = DT^2h^2 \frac{1}{2}\mu^2h^2 ETh^3 + \frac{1}{4}\lambda h^4$, cubic from bosons
- λ T_{-}

The Standard Model Result Lattice simulation: the most trustable result

- For $m_H \leq 46$ GeV, we can have SFOPT
- For $46 < m_H < 73$ GeV, we can have a weak 1st-order PT
- For $m_H > 73$ GeV, smooth crossover.
- Experiments found $m_H \simeq 125 \text{ GeV}$

 $\frac{v}{T} \simeq \frac{2E}{\lambda}$

 $m_H \simeq \sqrt{2\lambda} v$

Conclusion: SM EWBG fails. No out-of-equilibrium condition.

[K. Jansen, hep-lat/9509018], [K. Kajantie et al, hep-lat/9510020] [K. Rummukainen, hep-lat/9608079], [K. Kajantie et al, hep-ph/9605288.] [M. Gurtler et al, hep-lat/9704013], [F. Csikor et al, hep-ph/9809291] [M. Laine and K. Rummukainen, hep-ph/9804255, hep-lat/9804019] [K. Rummukainen et al, hep-lat/9805013], [Z.Fodor, hep-lat/9909162]

Take home notes

- Baryogenesis requirement: B violation, C and CP violation, out-of-equilibrium condition.
- ightarrowThe electroweak sphaleron offers B violation
- C and CP violation: model-dependent, not discussed here. D
- Electroweak phase transition, if strong 1s equilibrium condition.

 $-\simeq$ — where *E* comes from bosons contribution.

• SM EWPT is a smooth crossover, not enough for successful EWBG.

t order, i.e.
$$\frac{v(T_c)}{T_c} \simeq \frac{v(T_n)}{T_n} > 1$$
, provides out-of-

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- Naturally light extra scalar model
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

A simple solution: extra singlet scalar $V(I_c) = 2E$

- Introduce S:(1,1,0) singlet • General: $\mathscr{L} = SM + \frac{1}{2}\mu_S^2S^2 + \frac{1}{4}\lambda_SS^4 + other interactions$
- Z2-even S: SHH, S^3 , S^4 , SSHH, etc. Enhanced E term at zero temperature.
- Z2-odd S: S^4 , SSHH. Enhanced E at finite temperature.

• Only interact with Higgs: SSHH, S^4 , S^3 , SHH...., depending on the symmetry

Extra hierarchy problem

The SM electroweak hierarchy problem

Quadratic sensitive to Λ_{UV} : Huge quantum corrections!

Some traditional solutions: SUSY, compositeness....

The extra hierarchy problem from extra singlet

Typical models have $\frac{1}{\Delta}\lambda_{hS}S^2h^2$

 $\delta m_S^2 = \frac{\lambda_{hs}}{16\pi^2} \Lambda_{\rm UV}^2$

Typical singlet scalar model introduced extra hierarchy problem!

A "Naturally Light" Model Solve the extra hierarchy problem

Things could be easier if we can remove the S^2h^2

$$V = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{2}AS(h^2 - v^2) F$$

How to kill all those interaction terms? Shift symmetry: $S \rightarrow S + \delta S$

Only softly broken: ASh^2 , and mass term.

2
 term
=irst introduce:
for minimality
 $S = \frac{1}{h}$

Fox

 $\delta m_S^2 \simeq \frac{A^2}{16\pi^2} \ln(\frac{\Lambda_{UV}}{v}), A \text{ is soft, thus protected}$

h

"Naturally Light"!

[K. Harigaya and IW, 2207.02867]

T = 0 Structure

$$V = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\mu_s^2 S^2 + \frac{1}{2}AS(h^2 - \frac{1}{2}h^2) S^2 + \frac{1}{2}AS(h^2$$

$$\langle S \rangle = \frac{A}{2\mu_S^2} (h^2 - v^2)$$
 for arbitrary h , $V(h, \langle S \rangle) = -\frac{1}{2}\mu_h^2 h^2 + \frac{1}{4}(\lambda - \frac{A^2}{2\mu_S^2})h^4$

Now we can define $\lambda_{\text{eff}} = \lambda - \frac{A^2}{2\mu_S^2}$. Small λ_{eff} will enhance the EWPT. Requires $\mu_S < v!$

Fine-tuning: $\frac{\lambda_{\rm eff}}{\lambda} \simeq \frac{m_S^2}{\mu_S^2}$, m_S : measured physical S mass

$$\mu_{H}^{2} = \frac{1}{2} \left(m_{h}^{2} \cos^{2}\theta + m_{S}^{2} \sin^{2}\theta \right), \quad \mu_{S}^{2} = m_{S}^{2} \cos^{2}\theta + m_{h}^{2} \sin^{2}\theta \\ A = \frac{\left(m_{h}^{2} - m_{S}^{2}\right) \sin 2\theta}{2v}, \quad \lambda = \frac{m_{h}^{2} \cos^{2}\theta + m_{S}^{2} \sin^{2}\theta}{2v^{2}}.$$

$$v^2$$
) vev: $h = v, S = 0$

[P. Fox et al, 0910.1262] [K. Harigaya and IW, 2207.02867]

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- Naturally light extra scalar model
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

Ihermal phase transition (1) Thermal potential and 1-d analysis

$$V = DT^{2}h^{2} - \frac{1}{2}\mu_{h}^{2}h^{2} - ETh^{3} + \frac{1}{4}\lambda h^{4} + \frac{1}{2}\mu_{S}^{2}S^{2} - \frac{1}{2}AS(h^{2} + \frac{1}{3}T^{2} - v^{2}) \qquad D = D_{SM}, E = E_{SM} + \frac{\text{scalar ter}}{\text{small, negled}}$$

At high-T: $\langle h \rangle = 0$, restored symmetry! At low-T: $\langle h \rangle = v(T)$

1-step PT: $(0, \langle S \rangle(0,T)) \rightarrow (v(T), \langle S \rangle(v(T),T))$

Fix *S* at $\langle S \rangle$: $V = D'(T^2 - T_0'^2)h^2 - ETh^3 + \frac{1}{4}\lambda'h'$

Transition stren

$$\langle S \rangle(h,T) = \frac{A}{2\mu_S^2}(h^2 + \frac{1}{3}T^2 - v^2)$$
 for all T

⁴,
$$D' = D - \frac{1}{3} \frac{A^2}{4\mu_s^2}$$
, $\lambda' = \lambda_{\text{eff}} = \lambda - \frac{A^2}{2\mu_s^2}$, $T_0'^2 = \frac{\mu_h^2 \mu_s^2 - A^2 v^2}{2D' \mu_s^2}$
of the estimate: $\frac{v_c}{T_c} = \frac{2E}{\lambda'}$

[P. Fox et al, 0910.1262] [K. Harigaya and IW, 2207.02867]

Thermal phase transition (2) 2-d analysis: kinetic energy $S_3 = 4\pi \int r^2 (K+V) dr$

2-d field space: S contributes large kinetic (gradient) energy.

$$K_{1d} = K_h = \frac{1}{2} \left(\frac{dh(r)}{dr} \right)^2 \longrightarrow K_{2d} = K_h + K_S = K_h + \frac{1}{2} \left(\frac{dh(r)}{dr} \right)^2$$

$$\langle S \rangle(h,T) = \frac{A}{2\mu_S^2}(h^2 + \frac{1}{3}T^2 - v^2)$$

 \mathcal{O} $K_S(r) = K_h(r) \frac{A^2}{\mu_S^4} h(r)^2$ Diverge for $\mu_S \to 0$

[K. Harigaya and IW, 2207.02867]

Thermal phase transition (3) 2-d analysis: nucleation

Plots made along fixed fine-tuning

$$\frac{\beta}{H} \equiv T_n \frac{d(S_3/T)}{dT} \bigg|_{T=T_n}$$
 inverse time duration

becomes huge for small m_S

Large β/H compensates large S_3 , nucleation is not delayed too much.

[K. Harigaya and IW, 2207.02867]

Nucleation is more than critical

Nucleation is more physical: Bubble nucleates at T_n

The definition for SFOPT aims at sphaleron process decoupling inside the bubble.

Criteria based on T_n can sometimes favor very different parameter space.

Here, the difference is not large. But still slightly increase it.

> [Baum et al, 2009.10743] [K. Harigaya and IW, 2207.02867]

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- New model: naturally light extra scalar
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

Local EWBG

A general effective CP-violating op

- CP-violation come from $W\tilde{W}!$
- S: need SHH^{\dagger} to be CP-even (no CP-violation at non-UV scale!). S is CP-even. Rewrite: $\mathscr{L}_{CP} \propto \frac{1}{M} (\partial_0 S) n_B$ in thick-wall regime!

Thus
$$\dot{n}_B \propto \frac{\Gamma_{\text{sph}}}{T^3} (n_B - n_B^0) \simeq \frac{n_B}{S} \simeq 10^{-10} \frac{10^8 \text{GeV}}{M} \left(\frac{v(T_B)}{60}\right)$$

 $\partial_{\mu}J^{B}_{\mu} = \partial_{\mu}J^{L}_{\mu} = \frac{3g^{2}}{32\pi^{2}}W\tilde{W}$

perator:
$$\mathscr{L}_{CP} \propto \frac{\alpha_2}{8\pi} \frac{S}{M} W \tilde{W}, M$$
: UV scale.

From minimizing free energy, n_B gets a minimum $n_B^0 \propto \frac{1}{M} (\partial_0 S)$ $\langle S \rangle \simeq \frac{A}{2\mu_S^2} h^2$ Thus $\dot{n}_B \propto \frac{\Gamma_{\rm sph}}{T^3} (n_B - n_B^0) \simeq \frac{\Gamma_{\rm sph}}{T^3} n_B^0 = \frac{\Gamma_{\rm sph}}{T^3} \dot{S}$ Large field-value shift! For old literature using $\mathscr{L}_{CP} \propto \frac{\sin(\delta)}{M^2} h^2 W \tilde{W}$: $\frac{n_B}{M} \sim 10^{-10} \frac{10^8 \text{GeV}}{M} \left(\frac{V(T_n)}{M} \right)^2 \frac{10 \text{ MeV}}{M}$ [A. Cohen and B. Kaplan, Phys.Lett.B 199 (1987) 251-258 (1987) 251-258, μ_S Nucl.Phys.B 308 (1988) 913-928] [M. Dine et al, Phys.Lett.B 257 (1991) 351-356] [M. Dine, hep-ph/9206220]

The electric dipole moment

EDM:
$$\frac{d_e}{e} \simeq 10^{-36} \text{cm}$$

 $10^8 \text{ GeV} \quad \mu_S$ 10 MeV⁻, avoided! MCP-violation and baryogenesis: high M (weakly interacting) large field value shift

[K. Harigaya and IW, 2207.02867]

Take home notes

- introducing extra hierarchy problem.
- EWPT.
- the bubble nucleation.
- CP-violation happens from a high-scale theory.

Introduce a singlet scalar with shift-symmetry to achieve SFOEWPT without

Extra singlet modifies the tree-level quartic coupling and thus enhances

• 2-dimensional analysis shows huge S_3 and β/H in the model, slightly delay

EWBG can be achieved without violating EDM constraints. e.g. local EWBG.

Outlook and summary

- Introduction: failure of SM electroweak baryogenesis
- New model: naturally light extra scalar
- Thermal phase transition
- Electroweak baryogenesis
- Experimental probes
- Parity-symmetric generation

Collider Signals

S can mix with h, mixing angle $\sin \theta$. Generating vertex: $hZZ \rightarrow \sin\theta SZZ$ $h^3 \rightarrow \sin\theta \ hhS, \sin^2\theta \ hSS$

General probe: scalar production, Higgs exotic decay

Collider search can probe the extra singlet scalar at GeV scale

Current best collider bound comes from LEP on scalar production

> [L3 collaboration, Phys. Lett. B 385 (1996) 454–470.] [K. Harigaya and IW, 2207.02867]

Rare Meson Decay and $\Delta N_{\rm eff}$

Extra decay channel for Kaon:

 $K^+ \to \pi^+ S, K^0 \to \pi^0 S$, searched by NA62, KLEVER.... for MeV scale.

scale $m_{\rm S}$: large energy density when neutrino decouples. MeV

S decays into γ : negative ΔN_{eff}

Extra decay channel for *B* meson: $B^0 \rightarrow K^0S, B^+ \rightarrow K^+S$, searched by LHCb at 200 MeV < m_S < 4 GeV

Review: [PBC Group, 1901.09966], [E. Goudzovski et al, 2201.07805] [LHCb Collaboration, 1508.04094, 1612.07818, 1703.08501] [NA62 Collaboration, 2010.07644, 2103.15389] [KLEVER Project Collaboration, 1901.03099] [M. Ibe et al, 2112.11096], [Planck Collaboration, 1807.06209] [CMB-S4 Collaboration, 1610.02743],[K. Harigaya and IW, 2207.02867]

Results

[K. Harigaya and IW, 2207.02867]

Take home notes

- and Higgs exotic decay.
- \bullet

Collider experiment can probe extra scalar at GeV scale via scalar production

Rare B-meson and Kaon decay can be used to probe the scalar at MeV scale. CMB detection can exclude scalar with very light mass, i.e. a few MeV.

Summary

- phase transition without bringing in an extra hierarchy problem.
- S4, rare meson decay, and so forth.
- EWBG can be achieved. As an example, local EWBG can be achieved assuming a CP-violation source from 10^8 GeV scale.
- EDM constraints are avoided by the high UV scale.

• Electroweak baryogenesis faces the problem of lack of SFOPT. A singlet scalar extension with imposed approximate shift symmetry can enhance the

Extra singlet can be very light, at MeV scale, and can be detected by CMB-

Encore: Parity-symmetric generation

Strong CP problem (1) Classical level: an intuition

Neutron EDM

 $d_n \simeq 10^{-13} \sqrt{1 - \cos \theta} e \mathrm{cm}$

$$d_n = 0$$

Experimental limit: $d_n < 10^{-26} ecm$ Right one is preferred. Why $\theta \rightarrow 0$?

> This description is from: [A. Hook, 1812.02669]

Strong CP problem (2) Quantum level: the strong CP phase

 $\frac{\theta_{s}g_{s}^{2}}{32\pi^{2}}G\tilde{G} \xrightarrow{\psi \to e^{i\gamma_{5}\delta\theta}, \theta_{F} \to \theta_{F} - \delta\theta}}{\left[\Im\bar{\psi}\Im\psi^{\alpha}G^{\alpha}\phi^{\beta}g_{s}^{2}-\tilde{\psi}\right]} \theta_{F} = \arg(\det Y_{u}Y_{d})$ $\int \mathscr{D}\bar{\psi}\mathscr{D}\psi\mathscr{D}G\exp(\frac{\theta_{s}g_{s}^{2}}{32\pi^{2}}G\tilde{G})$ $\rightarrow \int \mathscr{D}\bar{\psi}\mathscr{D}\psi\mathscr{D}G\exp(\frac{(\theta_{s}+\delta\theta)g_{s}^{2}}{32\pi^{2}}G\tilde{G})$

 $\bar{\theta} = \theta_{s} + \theta_{F}$

 θ_F and θ_s rotate into each other. θ physical. Experiments: $\bar{\theta} < 10^{-10}$! Why?

Parity solution to the strong CP (1) Gauge group, fermion sector, Higgs, and Yukawa

Gauge group: $SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_X$.

	H_L	H_R	q_i	$ar{u}_i$	$ar{d}_i$	ℓ_i	$ar{e}_i$	$ar{Q}_i$	U_i	D_i	$ar{\ell}_i$	E_i
$SU(3)_c$	1	1	3	$\overline{3}$	3	1	1	$\overline{3}$	3	3	1	1
$SU(2)_L$	2	1	2	1	1	2	1	1	1	1	1	1
$SU(2)_R$	1	2	1	1	1	1	1	2	1	1	2	1
$U(1)_X$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	$-\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	-1

• Symmetric Higgs potential: $-\frac{1}{2}\mu_L^2 h_L^2 - \frac{1}{2}\mu_R^2 h_R^2 - \frac{1}{2}\mu_R^2 h_R^2$

- Yukawa: $y_u \bar{Q} U H_R^{\dagger} + y_d \bar{Q} D H_R + \bar{y}_u q \bar{u} H_L^{\dagger} + \bar{y}_d q d H_L + y_e \ell E H_R + \bar{y}_e \ell \bar{e} H_L$
- Extra Dirac mass term: $m_{ii}^{u} \bar{u}^{i} U^{j} + m_{ii}^{d} \bar{d}^{i} D^{j} + m_{ii}^{e} E_{i} \bar{e}_{j}$

$$+\frac{1}{4}\lambda(h_L^4+h_R^4)+\frac{\lambda_{LR}}{4}h_L^2h_R^2$$

[M. A. B. Beg and H. S. Tsao, Phys. Rev. Lett. 41 (1978) 278], [R. N. Mohapatra and G. Senjanovic, Phys. Lett. 79B (1978) 283], [K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62 (1989) 1079], [K. S. Babu and R. N. Mohapatra, Phys. Rev. D41 (1990) 1286], [L. J. Hall and K. Harigaya, 1803.08119], [N. Craig et al, 2012.13416]

Parity solution to the strong CP (2) Fermion masses and vanishing strong CP phase

- $yv_R \gg m^u$: SM quark q, \bar{u} has yv_L , mirror quark Q, U has yv_R .
- - Parity: $q \leftrightarrow \bar{Q}^{\dagger}$

Masses generated from: $y_u \bar{Q} U H_R^{\dagger} + \bar{y}_u q \bar{u} H_L^{\dagger} + m_{ii}^u U \bar{u}$

• $yv_R \ll m^u$: integrate out heavy fermion \bar{u}, U . SM fermion q, \bar{Q} have $\frac{y_u y_u}{M} q \bar{Q} H_L^{\dagger} H_R^{\dagger}$

$$\bar{u} \leftrightarrow U^{\dagger}, H_L \leftrightarrow H_R^{\dagger}$$

Forces $y_u = \bar{y}_u^{\dagger}, y_d = \bar{y}_d^{\dagger}$

From each theory $\theta_F = \arg(y_\mu y_d) + \arg(\bar{y}_\mu \bar{y}_d) = 0$ θ_{s} directly forbidden by parity ($G\tilde{G}$ violates parity)

[M. A. B. Beg and H. S. Tsao, Phys. Rev. Lett. 41 (1978) 278], [R. N. Mohapatra and G. Senjanovic, Phys. Lett. 79B (1978) 283], [K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62 (1989) 1079], [K. S. Babu and R. N. Mohapatra, Phys. Rev. D41 (1990) 1286], [L. J. Hall and K. Harigaya, 1803.08119], [N. Craig et al, 2012.13416]

Phase Transition Stages Left-Right symmetry breaking

$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_X$

$SU(3) \times SU(2)_L \times U(1)_V$

CP-violation, B violation...etc

create $(B - L \neq 0)$ Need B - L anomaly !

 $T_{n,R}$

 $T_{n.L}$

$B \propto (B - L) \neq 0$

Remember: B - L is non-anomalous in SM Any B will be washed out if there is no primordial non-zero B - L

Avoiding wash-out

 $T_{n,L}$

"Quarantine" one generation of mirror lepton

 $\mathscr{L} = x_{ij}^e \ell_i \bar{e}_j H_L + \bar{x}_{ij}^e \bar{\ell}_i E_j H_R + M_{ij}^e E_i \bar{e}_j \quad (i, j = 1, 2)$

 $+x_{3}^{e}\ell_{3}\bar{e}_{3}H_{L}+\bar{x}_{3}^{e}\bar{\ell}_{3}E_{3}H_{R}$

"Quarantine" one generation of mirror lepton

 $\mathscr{L} = x_{ij}^e \mathscr{l}_i \bar{e}_j H_L + \bar{x}_{ij}^e \bar{\ell}_i E_j H_R + M_{ij}^e E_i \bar{e}_j \quad (i, j = 1, 2)$

"Quarantine" one generation of mirror lepton

 $\mathscr{L} = x_{ij}^e \mathscr{C}_i \bar{e}_j H_L + \bar{x}_{ij}^e \bar{\mathscr{C}}_i E_j H_R + M_{ij}^e E_i \bar{e}_j \quad (i, j = 1, 2)$

 $+x_{3}^{e}\ell_{3}\bar{e}_{3}H_{L}+\bar{x}_{3}^{e}\bar{\ell}_{3}E_{3}H_{R}$

Until EWPT, or decay into righthanded neutrino

 $n_{B} = \frac{28}{79} n_{B-L} = \frac{26}{79} n_{\bar{\ell}_{3},E_{3}}$ $n_{\bar{\ell}_3}$ produced during $SU(2)_R$ PT

? Days

Freedom

"Quarantine" one generation of mirror lepton

 $\mathscr{L} = x_{ij}^e \mathscr{C}_i \bar{e}_j H_L + \bar{x}_{ij}^e \bar{\mathscr{C}}_i E_j H_R + M_{ij}^e E_i \bar{e}_j \quad (i, j = 1, 2)$

 $+x_{3}^{e}\ell_{3}\bar{e}_{3}H_{L}+\bar{x}_{3}^{e}\bar{\ell}_{3}E_{3}H_{R}$

Until EWPT, or decay into righthanded neutrino

2828 $n_B = \frac{1}{79} n_{B-L} = \frac{1}{79} n_{\ell_3, E_3}$ $n_{\bar{\ell}_3}$ produced during $SU(2)_R$ PT

? Day

Freedom

 $L_{\bar{\ell}_3,E_3}$

 $\overline{\ell}_{3}, E_{3}$

 L_N

 $\partial_{\mu} j^{\mu}_{B-L} = 0$ $(B-L)_{\rm SM} = L_{\bar{\ell}_3, E_3}$

2 Options: decay into right-handed neutrino $L_{\rm SM}$ • decay into SM

Scalar Extension: PT and BAU

$$\begin{split} V_0 &= -\frac{1}{2} \mu_{H_L}^2 h_L^2 - \frac{1}{2} \mu_{H_R}^2 h_R^2 + \frac{1}{4} \lambda (h_L^4 + h_R^4) \\ &+ \frac{1}{2} \mu_S^2 (S_L^2 + S_R^2) + \frac{1}{2} A S_L (h_L^2 - v_L^2) + \frac{1}{2} A S_R (h_R^2 - v_R^2) \\ &+ \frac{1}{4} \lambda_{\mathrm{LR}} h_L^2 h_R^2, \end{split}$$

$$\mathscr{L}_{CP} \propto \frac{\alpha_R}{8\pi} \frac{S_R}{M} V$$

$$Y_B \simeq 8.7 \times 10^{-11} \left(\frac{v_R}{20 \text{ Te}} \right)$$

 S_I : to be probe. S_R : enhances h_R PT, $\lambda(v_R) < \lambda(v_I)$ by running: different parameter space $W_R \tilde{W}_R, n_{\bar{\ell}_3} \propto \frac{\Gamma_{\rm sph}}{T^3} \frac{\partial_0 S}{M}$ $\left(\frac{10T_n}{\text{TeV}}\right) \left(\frac{10T_n}{v_R}\right)^2 \left(\frac{10v_R}{M}\right) \left(\frac{10 \text{ GeV}}{\mu_S}\right)$

[K. Harigaya and IW, future work]

Result

[K. Harigaya and IW, future work]

Result

[K. Harigaya and IW, future work]

Summary

- opened.
- source.
- Effective B L is required to pass a non-zero B L number.

 Applying the singlet extension into a parity symmetric model can solve the strong CP and baryogenesis problem together. New parameter space is

Baryon asymmetry can still be achieved from large UV scale CP-violating

T = 0 Structure Metastability at 1-loop

• 1-loop correction:

$$V_{\rm CW} \sim \sum_{B} n_B m_b^4 \log(\frac{m_B^2}{\mu^2}) - \sum_{F} n_F m_F^4 \log(\frac{m_F^2}{\mu^2}))$$

- Heavy top makes the $V_{\rm CW}$ negative at large h!
- Will the world tunnel from the EW vev to infinity?

• Tunneling action:
$$S_4 \equiv 2\pi^2 \int \left(\frac{1}{2} \left(\frac{dh}{dr}\right)^2 + \left(\frac{dS}{dr}\right)^2 + \left(\frac{dS}{dr}\right)^2 \right)^2$$

- Tunneling within the age of universe: $S_4 \lesssim 400$

 $+V)r^3dr$

Potential not bounded at infinity. Will it tunnel from (v,0) to infinity?

T = 0 **Structure** Metastability at 1-loop: continue

along the "valley".

Bounce action increases as we decrease m_S

 Bounce solution gives huge bounce action, path along the "valley".

•
$$\langle S \rangle \simeq \frac{A^2}{2\mu_S^2} (h^2 - v^2)$$
, light m_S has huge kinetic energy.

- However, bounce action does not guarantee a global minimum! (Or, the bounce solution does not exist for some case)
- e.g. If we move along S = 0, same as SM. Action is much smaller. But bounce does not exist in this case.
- There are many ways to solve the action without bounce.
 See [J. Espinosa, 1908.01730]

[J.Espinosa, 1908.01730], [S. Chigusa et al, 1803.03902] [K. Harigaya and IW, 2207.02867], [R. Sato, 1908.10868 (bounce code)]

A toy model of UV-completion for ASh^2 term

$yP\bar{L}_{1}L_{2} + \lambda_{1}H\bar{N}L_{1} + \lambda_{2}H^{\dagger}N\bar{L}_{2} + m_{1}\bar{L}_{1}L_{1} + m_{2}\bar{L}_{2}L_{2} + m_{N}\bar{N}N$

[K. Harigaya and IW, 2207.02867]

Options for neutrino masses (1) Majorana mass from dim-5 operator

 $c_{ij}^{M} \ell_{i} \ell_{j} H_{L}^{\dagger} H_{L}^{\dagger} + c_{ij}^{M*} \bar{\ell}_{i} \bar{\ell}_{j} H_{R}^{\dagger} H_{R}^{\dagger}$

Right-handed neutrino mass: $\sum m_{
u_i}$

Dilution factor D = 15

$$v_i (\frac{v_R}{v_L})^2 = 12 \text{ keV} \frac{\sum_i m_{\nu_i}}{100 \text{ meV}} \left(\frac{v_R}{60 \text{ TeV}}\right)^2$$

DM overproduction solved by dilution from entropy production

$$50 rac{\sum_{i} m_{
u_{i}}}{100 \text{ meV}} \left(rac{v_{R}}{60 \text{ TeV}}
ight)^{2} rac{80}{g_{s}(T_{D})}$$

Options for neutrino masses (2) Dirac mass from dim-5 operator

UV completion

Behave as Dark Radiation. Estimation: N decouple before QCD PT, $\Delta N_{eff} < 0.3$.

 $c_{ij}^D \ell_i \bar{\ell}_j H_I^{\dagger} H_R^{\dagger}$

 $\mathcal{L} = x^{\nu} \ell H_L^{\dagger} \bar{S} + \bar{x}^{\nu} \bar{\ell} H_R^{\dagger} S + M^{\nu} S \bar{S}.$

Same mass as SM neutrino.

Options for neutrino masses (3) Radiative inverse seesaw

$$yS\left(\ell H_L^{\dagger} + \bar{\ell} H_R^{\dagger}\right)$$
 S: singlet fermion

Right-handed neutrino mass: $SH_R^{\dagger} \overline{\ell}$ Left-handed neutrino mass: genrated radiatively

$$m_{\nu} \sim \frac{y^2}{16\pi^2} \frac{m_S v_L^2}{(yv_R)^2} = \frac{1}{16\pi^2} \frac{m_S v_L^2}{v_R^2} \sim 0.1 \text{ eV} \frac{m_S}{10 \text{ MeV}} \left(\frac{100 \text{ TeV}}{v_R}\right)^2$$

Assign a charge to avoid baryon number wash-out: $\ell_3(-1), \bar{\ell}_3(-1), E_3(+1), \bar{e}_3(+1), S(+1)$