1 GeV/c Proton-argon Inelastic Cross-section Update

Kinetic energy systematics

Heng-Ye Liao Hadron Analysis meeting August 11, 2022

Issue: Data/MC Not Agree at KEff

- Previous beam momentum reweighting:
 - Use range-based energy to build the weighting function
 - Assume constant energy loss at TPC FF

► MC wider than data after beam momentum reweighting

This version of reweighting only guarantees that range-based energy deposition is the same for both data & MC

To mitigate KE systematics at TPC FF, two key components need to be properly measured/handled:

[1] Beam momentum

(how well is energy measurement from beamline inst.)

[2] Energy loss upstream

(material budget)

 \rightarrow Need new method to solve [1] & [2]

E-loss Calculation

►KE_{ff}:=KE_{beam}-∆E

KE_{beam}: Energy measurement from beamline inst.

- ΔE :constant energy loss
- ►KE_{end}:=KE_{ff}- Σ (dE/dx*dx)
- Tune ΔE such that peak at end point locates at zero MeV

Kinetic Energy at TPC Front Face

Sungbin has demonstrated that energy can be well-reconstructed by fitting hypothetical residual ranges [link]
MC KE_{ff} (fit)=KE_{ff} (truth) → Proof that fitting algorithm did great job on energy reconstruction
Use data KE_{ff} (fit) as reference to build the new weighting function

KE_{ff} with New Weighting Function

- ►Use KE_{fit} (data) as KE_{ff} (truth) since the energy can be well-reconstructed using fitting alg.
- New weighting functions: Data:KE_{fit} (data)/(KE_{beam}-∆E) (data) MC: KE_{fit} (data)/(KE_{beam}-∆E) (MC)
- Data/MC agree well after applying new weighting function (by definition)

KE_{ff} (Elastic-scattering Protons)

Good data/MC agreement for elastic-scattering protons

KE_{ff} (Inelastic-scattering Protons)

Good data/MC agreement for elastic-scattering protons

KEend (Elastic-scattering Protons)

►MC is 10% wider than data

KEend (Inelastic-scattering Protons)

Data>MC at 100-300 MeV: Same pattern has seen before, need investigation

KEend (Inelastic-scattering Protons)

Calorimetric KE

- Single event display for KEs
- Inspection on KE(calo):
 - \rightarrow Gap in the short track area
 - \rightarrow Data/MC might have different KE(calo) in short track length

Main issue on KE_{ff} systematics has been solved using data KE_{fit}

► Remaining KE issue:

- Data/MC KE_{end} difference for inelastic- & elastic-scattering protons

►To do:

-Investigate data/MC difference on KE_{end}(calo)

-KE(Bethe-Bloch) as an alternative way for energy calculation

KEend (All Protons)

Inelastic Channel: Before/After Beam XY Cut

Similar data/MC agreement after Beam XY cut

Weighting Function for KE_{bb}

Build a weighting function for Bethe-Bloch based energy calculation

Length:120.0 [cm]

80000F

gaus_ref_240