
Portable Implementation
of the p2z Benchmark

using Alpaka

Cong Wang

BACKGROUND
2

• Today’s computing in HEP:
• code is written for the x86 platform is pretty much guaranteed to run everywhere in the

world, from computing centers using batch systems to our own laptops.

• GPUs and other accelerators provide more processing power for the same energy
consumption as with x86-based supercomputers. It can lead to designing algorithms and
implementing them for specific hardware platforms and combinations, and making it very
difficult to use not only one but several of these platforms.

• Motivation:
• investigate solutions for portability techniques that will allow the coding of an algorithm

once, and the ability to execute it on a variety of hardware products from many vendors,
especially including accelerators.

ALPAKA
3

• Abstraction Library for Parallel Kernel Acceleration:
• defines and implements an abstract interface for

the hierarchical redundant parallelism model. The model
exploits task- and data-parallelism as well as memory
hierarchies at all levels of current multi-core architectures.

• provides back-ends for CUDA, OpenMP, TBB and other
methods. The policy-based C++ template interface provided
allows for straightforward user-defined extension of the
library to support other accelerators.

• Sustainable, heterogeneous, maintainable,
testable, optimizable, extensible, data structure
agnostic

PROPAGATE TO Z
4

• Propagate to z (p2z):
• the layers at a fixed z positions (endcap

disks). The particles are propagated in a
homogeneous magnetic field with
direction parallel to the z axis.

• each track is propagated from layer N-1
to N and updated the track parameters
based on the hit (measurement) located
on layer N (mN) by using the Kalman
Filter.

• collision events inside a particle detector
are independent of each other.

• the various tracks created within an
event can be built and fitted
independently.

• tracks are grouped together in batches
to propagate from one layer of the
detector to the next.

• Parameters:
• batch size (bsize), number of layers (nlayer), events (nevts), tracks (ntrks), and batches (nb=ntrks/bsize)

IMPLEMENTATION
5

• Propagate-toz-test_alpaka_CPU:

• a universal grid-block and block-thread
definition for ,

as portable
accelerators.

• each event & batch of tracks is distributed
to one thread or block.

• SIMD inside computing functions.

which could be treated at once
due to the same instructions and no data
dependency.

• based on the accelerator, explicitly define
the number of resources, loop over till the
last event & batch of tracks.

threadIdx.x, threadIdx.y
= defined parallel threads

blockIdx.x * blockIdx.y
= defined parallel blocks

elementsperthread = batch size

IMPLEMENTATION
6

• Propagate-toz-test_alpaka_GPU:

• same code as CPU, same universal grid-
block and block-thread definition as CPU
for accelerator.

• each event & batch of tracks is distributed
to one block, one thread are responsible for
one track.

• based on the accelerator, explicitly define
the number of resources, loop over till the
last event & batch of tracks.

• one to multiple streams, asynchronous
memory transfer.

threadIdx.x * threadIdx.y
= defined parallel threads

blockIdx.x * blockIdx.y
= defined parallel blocks

CODE EXAMPLE
7

• Kernel:

Block
(1,0)

Block
(0,0)

Block
(0,1)

Block
(1,1)

....

....

Events

Bunch of Tracks

For GPU & CPU

CODE EXAMPLE
8

• Device (accelerator) functions:

Thread
(0,0)

Thread
(0,1)

Tr
ac

ks

....

Inside Block (0,0)
For CPU
Thread
(0,0)

For GPU

...

e0
e1

eN

Tracks

COMPILATION
9

• Parameters:
• bsize: 32, ntrks: 9600, nevts: 100, nb: 300, smear: 0.1, nlayer: 20, NITER: 5, Stream: 5

• Computing Architecture:
• Intel Xeon Gold 6148@2.40 GHz for CPU, 80 cores in total.
• V100 16 GB GPU on Wilson Cluster for GPU implementation testing.

• Compilers:
• GCC, NVCC, no ICC

• Cmake option:
• DCMAKE_CXX_COMPILER=g++

DCMAKE_C_COMPILER=gcc
DCMAKE_CUDA_COMPILER=nvcc

• DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED -
DALPAKA_ACC_CPU_B_OMP2_T_SEQ_ENABLED -
DALPAKA_ACC_CPU_B_SEQ_T_OMP2_ENABLED -
DALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED -
DALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED -
DALPAKA_ACC_GPU_CUDA_ENABLE

mailto:6148@2.40

RESULTS CPU
10

RESULTS GPU
11

CONCLUSION
12

• Alpaka Experience and Portability Matrix

• The performance of Alpaka implementations can be interpreted consistent with the
native counterparts. Based on the test results, there are no performance loss by
adding the Alpaka extensions if the compilers are the same.

• ICC is more powerful than GCC on CPUs, however, Alpaka does not have solutions.

Learning Code Conversion Building level Hardware map Feature

Easy to learn
Good docs

Lack of examples

Convertible with
little more efforts

No major changes
CMake provided

CPU, Nvidia GPU,
AMD GPU

No other supported

Reduction, Atomic
Kernel Concurrency

Debugging User Support Sustainability Interoperability Performance

Easy to debug Discussing thread
Small community

Life cycle
unpredictable

Mix with compiler
directives and

CUDA API

Minor loss or
equivalent

REFERENCE
13

• E. Zenker, R. Widera, G. Juckeland et al., Porting the Plasma Simulation PIConGPU to Heterogeneous
Architectures with Alpaka, video link (39 min), slides (PDF), DOI:10.5281/zenodo.6336086

• Alpaka: https://alpaka.readthedocs.io/en/latest/index.html

• Lantz, Steven, et al. "Speeding up particle track reconstruction using a parallel Kalman filter
algorithm." Journal of Instrumentation 15.09 (2020): P09030.

• Bhattacharya, Meghna, et al. "Portability: A Necessary Approach for Future Scientific
Software." arXiv preprint arXiv:2203.09945 (2022).

http://on-demand.gputechconf.com/gtc/2016/video/S6298.html
https://on-demand.gputechconf.com/gtc/2016/presentation/s6298-erik-zenker-porting-the-plasma.pdf
https://doi.org/10.5281/zenodo.6336086
https://alpaka.readthedocs.io/en/latest/index.html

QUESTIONS

