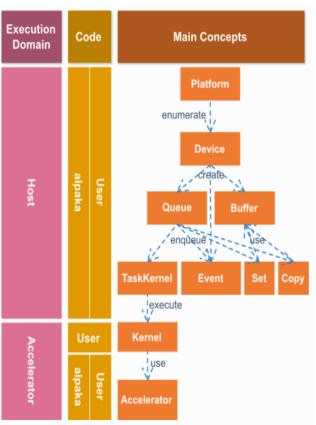
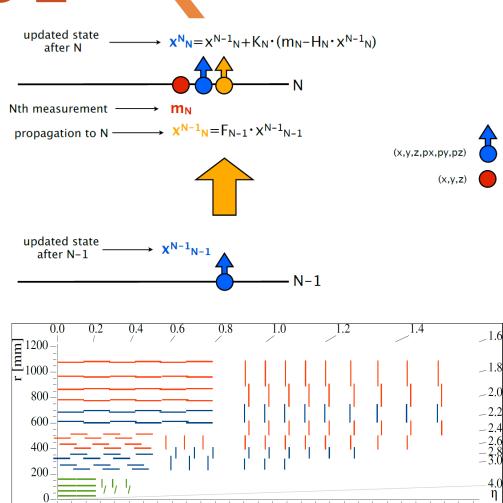
Portable Implementation of the p2z Benchmark using Alpaka

Cong Wang


BACKGROUND

- Today's computing in HEP:
 - code is written for the x86 platform is pretty much guaranteed to run everywhere in the world, from computing centers using batch systems to our own laptops.
 - GPUs and other accelerators provide more processing power for the same energy consumption as with x86-based supercomputers. It can lead to designing algorithms and implementing them for specific hardware platforms and combinations, and making it very difficult to use not only one but several of these platforms.
- Motivation:
 - investigate solutions for portability techniques that will allow the coding of an algorithm once, and the ability to execute it on a variety of hardware products from many vendors, especially including accelerators.


ALPAKA

- Abstraction Library for Parallel Kernel Acceleration:
 - defines and implements an abstract interface for the *hierarchical redundant parallelism* model. The model exploits task- and data-parallelism as well as memory hierarchies at all levels of current multi-core architectures.
 - provides back-ends for *CUDA*, *OpenMP*, *TBB* and other methods. The policy-based C++ template interface provided allows for straightforward user-defined extension of the library to support other accelerators.
- Sustainable, heterogeneous, maintainable, testable, optimizable, extensible, data structure agnostic

PROPAGATE TO Z

- Propagate to z (p2z):
 - the layers at a fixed z positions (endcap disks). The particles are propagated in a homogeneous magnetic field with direction parallel to the z axis.
 - each track is propagated from layer N-1 to N and updated the track parameters based on the hit (measurement) located on layer N (mN) by using the Kalman Filter.
 - collision events inside a particle detector are independent of each other.
 - the various tracks created within an event can be built and fitted independently.
 - tracks are grouped together in batches to propagate from one layer of the detector to the next.

1000

500

2000

1500

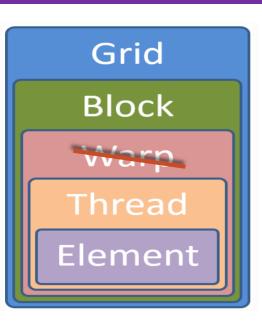
z [mm]

2500

Parameters:

batch size (bsize), number of layers (nlayer), events (nevts), tracks (ntrks), and batches (nb=ntrks/bsize)

IMPLEMENTATION

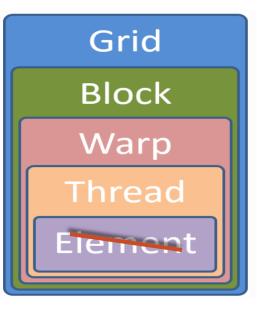

Propagate-toz-test_alpaka_CPU:

- a universal grid-block and block-thread definition for CpuThreads, Omp2threads, Omp2Blocks, and TbbBlocks as portable accelerators.
- each event & batch of tracks is distributed to one thread or block.
- SIMD inside computing functions. Each thread processes # of batch size elements which could be treated at once due to the same instructions and no data dependency.
- based on the accelerator, explicitly define the number of resources, loop over till the last event & batch of tracks.

threadIdx.x, threadIdx.y = defined parallel threads

blockldx.x * blockldx.y
= defined parallel blocks

elementsperthread = batch size


IMPLEMENTATION

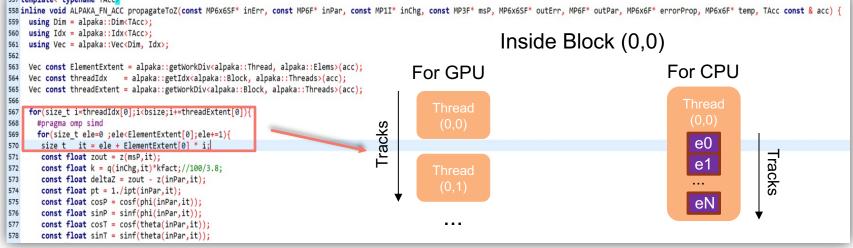
Propagate-toz-test_alpaka_GPU:

- same code as CPU, same universal gridblock and block-thread definition as CPU
 for CudaRt accelerator.
- each event & batch of tracks is distributed to one block, one thread are responsible for one track.
- based on the accelerator, explicitly define the number of resources, loop over till the last event & batch of tracks.
- one to multiple streams, asynchronous memory transfer.

threadIdx.x * threadIdx.y
= defined parallel threads

blockldx.x * blockldx.y
= defined parallel blocks

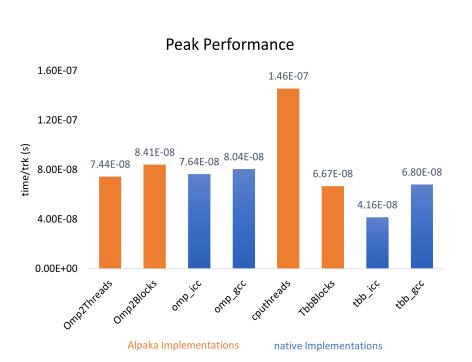
CODE EXAMPLE

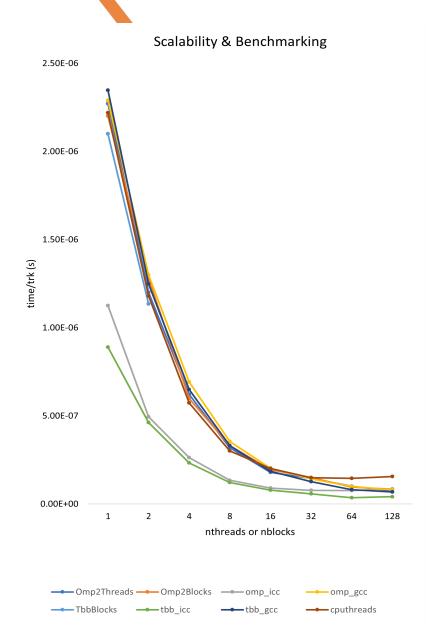

• Kernel:

Remei.					
610 struct alpakaKernel					
G12 public:					
613 template <typename tacc=""></typename>					
614 ALPAKA FN ACC auto operator()(
615 TACC const& acc,					
616 MPTRK* trk,					
617 MPHIT* hit,	For GPU & CPU				
618 MPTRK* outtrk,					
619 const int stream					
620) const -> void					
621 {	—				
622 using Dim = alpaka::Dim <tacc>;</tacc>	Events				
623 using Idx = alpaka::Idx <tacc>;</tacc>					
	· · · · · · · · · · · · · · · · · · ·				
<pre>624 using Vec = alpaka::Vec<dim, idx="">; 625</dim,></pre>					
<pre>626 Vec const threadIdx = alpaka::getIdx<alpaka::block, alpaka::threads="">(acc);</alpaka::block,></pre>					
627 Vec const threadExtent = alpaka::getUdx <alpaka::block, alpaka::threads="">(acc); 627 Vec const threadExtent = alpaka::getWorkDiv<alpaka::block, alpaka::threads="">(acc);</alpaka::block,></alpaka::block,>	Block Block				
	(0,0) (1,0) ···· <u>주</u>				
<pre>629 Vec const blockExtent = alpaka::getWorkDiv<alpaka::grid, alpaka::blocks="">(acc); 630</alpaka::grid,></pre>					
<pre>auto & errorProp = alpaka::declareSharedVar<mp6x6f, counter_="">(acc);</mp6x6f,></pre>	Q				
<pre>632 auto & temp = alpaka::declareSharedVar<mp6x6f,counter_>(acc); 633 auto & inverse temp = alpaka::declareSharedVar<mp3x3, counter="">(acc);</mp3x3,></mp6x6f,counter_></pre>	Block Block 3				
<pre>634 auto & kGain = alpaka::declareSharedVar<mp3x6,counter_>(acc); 635 auto & newErr = alpaka::declareSharedVar<mp6x6sf,counter_>(acc);</mp6x6sf,counter_></mp3x6,counter_></pre>	Block (0,0)Block (1,0)Block racksBlock (0,1)Block (1,1)Block (1,1)Block racks				
636					
637 int ie range:	↓				
<pre>if(stream == num_streams){ ie_range = (int)(nevts%num_streams);}</pre>	•				
639 else{ie range = (int)(nevts/num streams);}					
640					
<pre>640 641 for (size_t ie=blockIdx[0];ie<ie_range;ie+=blockextent[0]) &="" for="" loop="" omp2blocks<="" pre="" tbbblocks="" {=""></ie_range;ie+=blockextent[0])></pre>	8 GDU				
642 for (size t ib=blockIdx[1];ib <nb;ib+=blockextent[1]) &="" for="" gf<="" loop="" omp2blocks="" tbbblocks="" td="" {=""><td></td><td></td></nb;ib+=blockextent[1])>					
643 const MPTRK* btracks = bTk(trk, ie, ib);	~0				
644 MPTRK* obtracks = bTk(outtrk, ie, ib);					
645 for(size t layer=0; layer <nlayer;++layer){< td=""><td></td><td></td></nlayer;++layer){<>					
646 const MPHIT* bhits = bHit(hit, ie, ib,layer);					
<pre>647 Const MPRITE DRICE = DRIC(NIC, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10</pre>					
648 propagateToZ(&(*btracks).cov, &(*btracks).par, &(*btracks).q, &(*bhits).pos, &(*obtr	aska) cov (/*ohtpacka) pap (oppopDpop (topp acc)) // voctor	ized function			
		Ized function			
<pre>649 KalmanUpdate(&(*obtracks).cov,&(*obtracks).par,&(*bhits).cov,&(*bhits).pos,&inverse_temp, &kGain, &(newErr), acc); 650 }</pre>					
651 }					
652 }					
653 }					
653 } 654 };					
61 F0					

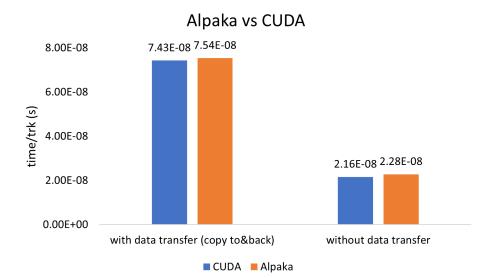
CODE EXAMPLE

• Device (accelerator) functions:


557 template< typename TAcc>



COMPILATION


- Parameters:
 - bsize: 32, ntrks: 9600, nevts: 100, nb: 300, smear: 0.1, nlayer: 20, NITER: 5, Stream: 5
- Computing Architecture:
 - Intel Xeon Gold 6148@2.40 GHz for CPU, 80 cores in total.
 - V100 16 GB GPU on Wilson Cluster for GPU implementation testing.
- Compilers:
 - GCC, NVCC, no ICC
- Cmake option:
 - DCMAKE_CXX_COMPILER=g++ DCMAKE_C_COMPILER=gcc DCMAKE_CUDA_COMPILER=nvcc
 - DALPAKA_ACC_CPU_B_SEQ_T_SEQ_ENABLED DALPAKA_ACC_CPU_B_OMP2_T_SEQ_ENABLED DALPAKA_ACC_CPU_B_SEQ_T_OMP2_ENABLED DALPAKA_ACC_CPU_B_SEQ_T_THREADS_ENABLED DALPAKA_ACC_CPU_B_TBB_T_SEQ_ENABLED DALPAKA_ACC_GPU_CUDA_ENABLE

RESULTS CPU

RESULTS GPU

CONCLUSION

• Alpaka Experience and Portability Matrix

Learning	Code Conversion	Building level	Hardware map	Feature
Easy to learn Good docs Lack of examples	Convertible with little more efforts	No major changes CMake provided	CPU, Nvidia GPU, AMD GPU No other supported	Reduction, Atomic Kernel Concurrency
Debugging	User Support	Sustainability	Interoperability	Performance
Easy to debug	Discussing thread Small community	Life cycle unpredictable	Mix with compiler directives and CUDA API	Minor loss or equivalent

REFERENCE

- E. Zenker, R. Widera, G. Juckeland et al., *Porting the Plasma Simulation PIConGPU to Heterogeneous* Architectures with Alpaka, video link (39 min), slides (PDF), DOI:10.5281/zenodo.6336086
- Alpaka: <u>https://alpaka.readthedocs.io/en/latest/index.html</u>
- Lantz, Steven, et al. "Speeding up particle track reconstruction using a parallel Kalman filter algorithm." *Journal of Instrumentation* 15.09 (2020): P09030.
- Bhattacharya, Meghna, et al. "Portability: A Necessary Approach for Future Scientific Software." *arXiv preprint arXiv:2203.09945* (2022).

