
Autoencoder Optimization for Data
Compression in front-end ASICs

Quinlan Bock

Advisors: Nhan Tran, Ben Hawks

Background - CMS

- Compact Muon Solenoid Experiment (CMS) at
CERN’s LHC upgraded with high-granularity
calorimeters (HGCAL)

- HGCAL includes ~6.5 million readout channels
- Collisions occur at a rate of 40Mhz
- High radiation environment creates undesirable

faults
- Transport data from collisions to trigger systems
- Trigger systems decide data represents

interesting particles and if to store for offline
analysis

- Reduce latency and improve throughput by using
ASICs and FPGAs for compression and triggering

Background - Need for Data Compression

- Latency too high to process all the data
from HGCAL uncompressed

- Compression algorithm that can handle
the unstructured data

- Data compression allows more data
transmit further down the data pipeline

- Latency requirements higher near
triggering and storage where data can be
uncompressed and processed

Background - Speed, Size, and Power Constraints

- Data compression must be quick to
handle amount and frequency of the
data being generated

- Compression algorithm must run on
ASICs for latency

- ASICs limits on power consumption,
and physical size limits size
compression algorithm

- Places an upper bound on complexity
of compression algorithm

Background - Auto Encoders

- Autoencoders: specific neural network where output of the network is the
same size as the input

- Minimize the loss between the input and the output
- Network consists of an encoder and a decoder
- Encoder feeds input to neural network layers and produces smaller encoded

tensor
- Decoder takes encoded tensor and works to recreate the input to the encoder

Detector Input Encoded Vector Decoded Output

ECON-T

- The ECON-T contains an autoencoder model
developed specifically for encoding data from
HGCAL

- Written in python using Tensorflow and Keras
- Each model takes as its input the 4x4x3 shaped

data and produces an encoded vector of size 16
- Model layers can include CNN layers, pooling

layers, and dense layers
- Various functions used to compute loss however

telescoping loss is used for original training
- Earth Mover's Distance (EMD) used as additional

metric to quantify the distance between the input
and reconstructed input

Convolutional, Pooling
and, Dense Layers

Detector 4x4x3
Input

Reshaped 8x8
Data

16x1 Encoded
Vector

EMD

- Distance function between two
probability functions

- Amount of shading needed to
change for images to match

Telescoping Loss

- Associate shape information to
each trigger cell (TC)

- Form 4x4, 2x2 super cell (SC)
groupings

- Weight TCs less corresponding to
how many SCs they appear in

- Mask SC groupings and add
differences between input and
reconstructed TCs, and SCs

- Associates the loss at multiple
scales

Multi-objective optimization

- Hardware optimization for size, latency, OPs, and power
- Software optimization for reconstruction performance (EMD, telescoping loss)
- Optimizing both hardware and software can not be done separately since they

both impact each other
- Nessicates co-design process where hardware and software optimization are

integrated

Model: "encoder"

 Layer (type) Output Shape Param #
==
 input_1 (InputLayer) [(None, 8, 8, 1)] 0
 conv2d (Conv2D) (None, 4, 4, 8) 80
 flatten (Flatten) (None, 128) 0
 encoded_vector (Dense) (None, 16) 2064
==
Total params: 2,144
Trainable params: 2,144
Non-trainable params: 0

Model: "decoder"

 Layer (type) Output Shape Param #
==
 decoder_input (InputLayer) [(None, 16)] 0
 dense (Dense) (None, 128) 2176
 reshape (Reshape) (None, 4, 4, 8) 0
 conv2d_transpose (Conv2DTranspose) (None, 8, 8, 8) 584
 conv2d_transpose_1 (Conv2DTranspose) (None, 8, 8, 1) 73
 decoder_output (Activation) (None, 8, 8, 1) 0
==
Total params: 2,833
Trainable params: 2,833
Non-trainable params: 0

ECON-T - Baseline Model Architecture

- 4x4x3 data reshaped into 8x8x1
input

- Model architecture is very small
amounting to just 4,977 trainable
parameters

- Trained for 100 epochs with
batches of size 800

- Achieves EMD of 1.067

Hyperparameter Optimization and Model Architecture
Exploration

- The baseline model architecture created through
human trial and error, and heuristics behind
autoencoders

- Optimization explores architectures and
hyperparameters that provide better performance

- Search is automated and iterative,
- On each iteration a set of parameters is chosen

based off of previous trials to:
- Exploit space of parameters of which it knows produces good

performance and optimize that performance further
- Explore the spaces where there is uncertainty in whether that

parameterization will produce a good model

Bayesian Optimization

- Works upon Bayes Rule
- Start with surrogate model representing prior belief about model parameters

and performance
- This model is updated iteratively after the new parameterizations are sampled
- Each new parameterization is used to create a network and train that network

for a certain amount of epochs to produce a EMD metric
- The surrogate model is

then updated based
upon the EMD

Ax

- Framework for hyperparameter search using
Bayesian Optimization

- Need to provide:
- Definition of each hyperparameters to be optimized and

domain parameters
- Function with parameterization as input that constructs

the network, does training, and returns a metric optimize
(EMD)

- No support for conditional constraints on
hyperparameters

- Ax can’t choose number of each type of layer
- Hybrid approach: do grid search for each

combination of CNN and dense layers then use
Ax for hyperparameter optimization within each
grid cells

Adaptive ASHA

- Adaptive Asynchronous Successive Halving Algorithm
- SHA runs all model trials for a set duration in first iteration then discards lower performing

half of trials
- Process repeated until models are narrowed down to threshold and stopping conditions are

reached
- Instead of the algorithm waiting for full information to be obtained for all models at each

iteration, only the a minimum amount of information is need to move to further testing
- Results in models that don’t get hung up on underutilized models that are still training

Determined.ai

- Uses Adaptive ASHA for hyperparameter optimization
- Combination of CLI and high level web interface tools allows visualization of training metrics

and multiple experiments in real time
- Conditional hyperparameter constraint support means in addition to searching

hyperparameters the algorithm can also search number of layers
- Need to provide:

- Hyperparameters and their domains and constraints
- Functions to load training/testing data and build optimizer, model, and callbacks

Compute for Model Training and Optimization

- Single ECON-T autoencoder model can be trained locally
- Local compute for hyperparameter optimization isn’t possible
- Both Ax, and Determined.ai optimizations are run on Fermilab’s Elastic

Analysis Facility
- Allows training through JupyterHub and Determined’s own web interface
- Thanks to Burt Holzman and Ben Hawks for helping setting up user accounts

and Determined instance

Hyperparameter Domains

- Up to 3 CNN layers and 3 Dense layers
- For each CNN layer

- Number of filters in the layer
- Kernel size
- Stride
- Whether to include pooling layer after

- For each Dense layer
- Number of units in the layer

- Future:
- Batch size
- Learning rate

for i in range(0, cnn_layers+1):

ax_parameters.append({"name": f"filters_{i}",

 "type": "choice",

 "is_ordered": True,

 "value_type": "int",

 "values": [0,2,4,8,16,32,64]})

ax_parameters.append({"name": f"kernel_{i}",

 "type": "choice",

 "is_ordered": True,

 "value_type": "int",

 "values": [1,3,5]})

ax_parameters.append({"name": f"pooling_{i}",

 "type": "choice",

 "is_ordered": True,

 "value_type": "bool",

 "values": [True,False]})

ax_parameters.append({"name": f"stride_{i}",

 "type": "choice",

 "is_ordered": True,

 "value_type": "int",

 "values": [1,2,4]})

for i in range(0, dense_layers+1):

ax_parameters.append({"name": f"units_{i}",

 "type": "choice",

 "is_ordered": True,

 "value_type": "int",

 "values": [16,32,64]})

Ax - Results
EMD EMD_error filters_1 kernel_1 pooling_1 stride_1 filters_2 kernel_2 pooling_2 stride_2 units_1 units_2 units_3 filters_3 kernel_3 pooling_3 stride_3

1.365 0.424 32 5 FALSE 4 16 3 FALSE 4

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.48 0.449 8 5 FALSE 2 4 5 TRUE 1 0 5 TRUE 1

1.521 0.489 32 5 FALSE 2 32 1 TRUE 1 4 3 TRUE 2

Results from Ax using Bayesian optimization/Grid search hybrid approach. Each trial
was trained for 20 epochs. There were 15 trials per grid tile.

Pareto Fronts

- Pareto front is line on which optimal parameterizations exist
- Parameterizations on Pareto front trade off between EMD and OPs
- An increase in OPs corresponds to increase in size of model on chip

Ax - Results

8x8_c8_k5_pTrue_S1_tele

8x8_c16_k3_pTrue_S1_tele

8x8_c32_k3_pFalse_S1_tele

8x8_c64_k3_pFalse_S1_tele

- 8x8_c64_S1_tele EMD: 0.680
- 1 CNN layer, filters 64, kernel size (3,3),

stride 1
- No Max pooling layer

- 8x8_c8_S2_tele EMD of 1.067
- 1 CNN layer, filters 8, kernel size (3,3),

stride 1
- No Max pooling layer

- 8x8_c8_S2_tele FLOPS: 6544
- 8x8_c64_S1_tele FLOPS: 208912
- 36% reduction in EMD
- 309% increase in FLOPS

Sherlock

- Designed specifically for parameter
optimization in FPGA synthesis

- Uses active learning to sample
parameterization and model pareto
front

- Samples from gaussian process,
random forest, and radial bias
function as the surrogate model

Future Work

- Hyperparameter optimization via Determined.ai
- Model and hardware parameter optimization via Sherlock
- Use hls4ml to generate code to transpile to FPGA firmware via

High-Level Synthesis libraries
- Test performance on FPGA

