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Background - CMS

- Compact Muon Solenoid Experiment (CMS) at 
CERN’s LHC upgraded with high-granularity 
calorimeters (HGCAL) 

- HGCAL includes ~6.5 million readout channels 
- Collisions occur at a rate of 40Mhz 
- High radiation environment creates undesirable 

faults
- Transport data from collisions to trigger systems
- Trigger systems decide data represents 

interesting particles and if to store for offline 
analysis

- Reduce latency and improve throughput by using 
ASICs and FPGAs for compression and triggering



Background - Need for Data Compression

- Latency too high to process all the data 
from HGCAL uncompressed

- Compression algorithm that can handle 
the unstructured data

- Data compression allows more data 
transmit further down the data pipeline

- Latency requirements higher near 
triggering and storage where data can be 
uncompressed and processed



Background - Speed, Size, and Power Constraints

- Data compression must be quick to 
handle amount and frequency of the 
data being generated

- Compression algorithm must run on 
ASICs for latency

- ASICs limits on power consumption, 
and physical size limits size 
compression algorithm

- Places an upper bound on complexity 
of compression algorithm



Background - Auto Encoders

- Autoencoders: specific neural network where output of the network is the 
same size as the input

- Minimize the loss between the input and the output 
- Network consists of an encoder and a decoder
- Encoder feeds input to neural network layers and produces smaller encoded 

tensor 
- Decoder takes encoded tensor and works to recreate the input to the encoder

Detector Input Encoded Vector Decoded Output



ECON-T 

- The ECON-T contains an autoencoder model 
developed specifically for encoding data from 
HGCAL

- Written in python using Tensorflow and Keras
- Each model takes as its input the 4x4x3 shaped 

data and produces an encoded vector of size 16 
- Model layers can include CNN layers, pooling 

layers, and dense layers
- Various functions used to compute loss however 

telescoping loss is used for original training
- Earth Mover's Distance (EMD) used as additional 

metric to quantify the distance between the input 
and reconstructed input

Convolutional, Pooling 
and, Dense Layers

Detector 4x4x3 
Input

Reshaped 8x8 
Data

16x1 Encoded 
Vector



EMD

- Distance function between two 
probability functions

- Amount of shading needed to 
change for images to match

Telescoping Loss

- Associate shape information to 
each trigger cell (TC)

- Form 4x4, 2x2 super cell (SC) 
groupings

- Weight TCs less corresponding to 
how many SCs they appear in

- Mask SC groupings and add 
differences between input and 
reconstructed TCs, and SCs

- Associates the loss at multiple 
scales



Multi-objective optimization

- Hardware optimization for size, latency, OPs, and power
- Software optimization for reconstruction performance (EMD, telescoping loss)
- Optimizing both hardware and software can not be done separately since they 

both impact each other
- Nessicates co-design process where hardware and software optimization are 

integrated



Model: "encoder"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
==============================================================
 input_1 (InputLayer)        [(None, 8, 8, 1)]           0                                                              
 conv2d (Conv2D)             (None, 4, 4, 8)             80                                                                     
 flatten (Flatten)           (None, 128)                 0                                                                       
 encoded_vector (Dense)      (None, 16)                   2064                                                                   
==============================================================
Total params: 2,144
Trainable params: 2,144
Non-trainable params: 0
_________________________________________________________________
Model: "decoder"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
==============================================================
 decoder_input (InputLayer)  [(None, 16)]                 0                                                                   
 dense (Dense)               (None, 128)                 2176                                                               
 reshape (Reshape)           (None, 4, 4, 8)             0                                                                 
 conv2d_transpose (Conv2DTranspose)  (None, 8, 8, 8)             584                                                                                                                
 conv2d_transpose_1 (Conv2DTranspose)  (None, 8, 8, 1)             73                                                                                                
 decoder_output (Activation)  (None, 8, 8, 1)      0                                                                 
==============================================================
Total params: 2,833
Trainable params: 2,833
Non-trainable params: 0
_________________________________________________________________

ECON-T - Baseline Model Architecture

- 4x4x3 data reshaped into 8x8x1 
input

- Model architecture is very small 
amounting to just 4,977 trainable 
parameters

- Trained for 100 epochs with 
batches of size 800

- Achieves EMD of 1.067



Hyperparameter Optimization and Model Architecture 
Exploration 

- The baseline model architecture created through 
human trial and error, and heuristics behind 
autoencoders

- Optimization explores architectures and 
hyperparameters that provide better performance

- Search is automated and iterative, 
- On each iteration a set of parameters is chosen 

based off of previous trials to:
- Exploit space of parameters of which it knows produces good 

performance and optimize that performance further
- Explore the spaces where there is uncertainty in whether that 

parameterization will produce a good model



Bayesian Optimization

- Works upon Bayes Rule
- Start with surrogate model representing prior belief about model parameters 

and performance
- This model is updated iteratively after the new parameterizations are sampled 
- Each new parameterization is used to create a network and train that network 

for a certain amount of epochs to produce a EMD metric 
- The surrogate model is 

then updated based 
upon the EMD 



Ax

- Framework for hyperparameter search using 
Bayesian Optimization

- Need to provide:
- Definition of each hyperparameters to be optimized and 

domain parameters
- Function with parameterization as input that constructs 

the network, does training, and returns a metric optimize 
(EMD)

- No support for conditional constraints on 
hyperparameters

- Ax can’t choose number of each type of layer
- Hybrid approach: do grid search for each 

combination of CNN and dense layers then use 
Ax for hyperparameter optimization within each 
grid cells 



Adaptive ASHA

- Adaptive Asynchronous Successive Halving Algorithm
- SHA runs all model trials for a set duration in first iteration then discards lower performing 

half of trials
- Process repeated until models are narrowed down to threshold and stopping conditions are 

reached
- Instead of the algorithm waiting for full information to be obtained for all models at each 

iteration, only the a minimum amount of information is need to move to further testing
- Results in models that don’t get hung up on underutilized models that are still training



Determined.ai

- Uses Adaptive ASHA for hyperparameter optimization
- Combination of CLI and high level web interface tools allows visualization of training metrics 

and multiple experiments in real time
- Conditional hyperparameter constraint support means in addition to searching 

hyperparameters the algorithm can also search number of layers
- Need to provide:

- Hyperparameters and their domains and constraints
- Functions to load training/testing data and build optimizer, model, and callbacks 



Compute for Model Training and Optimization

- Single ECON-T autoencoder model can be trained locally 
- Local compute for hyperparameter optimization isn’t possible
- Both Ax, and Determined.ai optimizations are run on Fermilab’s Elastic 

Analysis Facility
- Allows training through JupyterHub and Determined’s own web interface
- Thanks to Burt Holzman and Ben Hawks for helping setting up user accounts 

and Determined instance



Hyperparameter Domains

- Up to 3 CNN layers and 3 Dense layers 
- For each CNN layer

- Number of filters in the layer
- Kernel size
- Stride
- Whether to include pooling layer after

- For each Dense layer
- Number of units in the layer

- Future:
- Batch size
- Learning rate

for i in range(0, cnn_layers+1):

ax_parameters.append({"name": f"filters_{i}",

  "type": "choice",

                                "is_ordered": True,

                                "value_type": "int",

                                "values": [0,2,4,8,16,32,64]})

ax_parameters.append({"name": f"kernel_{i}",

                                           "type": "choice",

                                           "is_ordered": True,

                                           "value_type": "int",

                                           "values": [1,3,5]})

ax_parameters.append({"name": f"pooling_{i}",

                                           "type": "choice",

                                           "is_ordered": True,

                                           "value_type": "bool",

                                           "values": [True,False]})

ax_parameters.append({"name": f"stride_{i}",

                                           "type": "choice",

                                           "is_ordered": True,

                                           "value_type": "int",

                                           "values": [1,2,4]})

for i in range(0, dense_layers+1):

ax_parameters.append({"name": f"units_{i}",

                                "type": "choice",

                                "is_ordered": True,

                                "value_type": "int",

                                "values": [16,32,64]})



Ax - Results
EMD EMD_error filters_1 kernel_1 pooling_1 stride_1 filters_2 kernel_2 pooling_2 stride_2 units_1 units_2 units_3 filters_3 kernel_3 pooling_3 stride_3

1.365 0.424 32 5 FALSE 4 16 3 FALSE 4

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.48 0.449 8 5 FALSE 2 4 5 TRUE 1 0 5 TRUE 1

1.521 0.489 32 5 FALSE 2 32 1 TRUE 1 4 3 TRUE 2

Results from Ax using Bayesian optimization/Grid search hybrid approach. Each trial 
was trained for 20 epochs. There were 15 trials per grid tile.



Pareto Fronts

- Pareto front is line on which optimal parameterizations exist 
- Parameterizations on Pareto front trade off between EMD and OPs
- An increase in OPs corresponds to increase in size of model on chip



Ax - Results 

8x8_c8_k5_pTrue_S1_tele

8x8_c16_k3_pTrue_S1_tele

8x8_c32_k3_pFalse_S1_tele

8x8_c64_k3_pFalse_S1_tele

- 8x8_c64_S1_tele EMD: 0.680
- 1 CNN layer, filters 64, kernel size (3,3), 

stride 1
- No Max pooling layer

- 8x8_c8_S2_tele EMD of 1.067
- 1 CNN layer, filters 8, kernel size (3,3), 

stride 1
- No Max pooling layer

- 8x8_c8_S2_tele FLOPS: 6544
- 8x8_c64_S1_tele FLOPS: 208912
- 36% reduction in EMD 
- 309% increase in FLOPS



Sherlock

- Designed specifically for parameter 
optimization in FPGA synthesis

- Uses active learning to sample 
parameterization and model pareto 
front

- Samples from gaussian process, 
random forest, and radial bias 
function as the surrogate model



Future Work

- Hyperparameter optimization via Determined.ai 
- Model and hardware parameter optimization via Sherlock
- Use hls4ml to generate code to transpile to FPGA firmware via 

High-Level Synthesis libraries
- Test performance on FPGA 


