Autoencoder Optimization for Data
Compression in front-end ASICs

Quinlan Bock

Advisors: Nhan Tran, Ben Hawks

Background - CMS

- Compact Muon Solenoid Experiment (CMS) at
CERN’s LHC upgraded with high-granularity
calorimeters (HGCAL)

- HGCAL includes ~6.5 million readout channels

- Collisions occur at a rate of 40Mhz

- High radiation environment creates undesirable
faults

- Transport data from collisions to trigger systems

- Trigger systems decide data represents
interesting particles and if to store for offline
analysis

- Reduce latency and improve throughput by using
ASICs and FPGAs for compression and triggering

Background - Need for Data Compression

- Latency too high to process all the data
from HGCAL uncompressed

- Compression algorithm that can handle
the unstructured data

- Data compression allows more data
transmit further down the data pipeline

- Latency requirements higher near
triggering and storage where data can be
uncompressed and processed

Background - Speed, Size, and Power Constraints

- Data compression must be quick to
handle amount and frequency of the
data being generated

- Compression algorithm must run on
ASICs for latency

- ASICs limits on power consumption,
and physical size limits size
compression algorithm

- Places an upper bound on complexity
of compression algorithm

Background - Auto Encoders

- Autoencoders: specific neural network where output of the network is the
same size as the input

- Minimize the loss between the input and the output

- Network consists of an encoder and a decoder

- Encoder feeds input to neural network layers and produces smaller encoded
tensor

- Decoder takes encoded tensor and works to recreate the input to the encoder

%.0 0.2 0.4 06 08 1.0
Detector Input Encoded Vector Decoded Output

E C O N -T Detector 4x4x3

Input

- The ECON-T contains an autoencoder model
developed specifically for encoding data from

HGCAL
- Written in python using Tensorflow and Keras Reshaped 8x8
- Each model takes as its input the 4x4x3 shaped m
data and produces an encoded vector of size 16 l
- Model layers can include CNN layers, pooling
layers, and dense layers Convolutional, Pooling
- Various functions used to compute loss however and, Dense Layers
telescoping loss is used for original training l

- Earth Mover's Distance (EMD) used as additional

metric to quantify the distance between the input 10x enooded D]:H
and reconstructed input

EMD

175

15.0 1

125

25

00

inputQ

EMD =

5 8] 8 g

1.600

Distance function between two
probability functions

Amount of shading needed to
change for images to match

outputQ

175

150

125

75

25

00

5 B 8 8 8

Telescoping Loss

- Associate shape information to
each trigger cell (TC)

- Form 4x4, 2x2 super cell (SC)
groupings

- Weight TCs less corresponding to
how many SCs they appear in

- Mask SC groupings and add
differences between input and
reconstructed TCs, and SCs

- Associates the loss at multiple
scales

Multi-objective optimization

- Hardware optimization for size, latency, OPs, and power

- Software optimization for reconstruction performance (EMD, telescoping loss)

- Optimizing both hardware and software can not be done separately since they
both impact each other

- Nessicates co-design process where hardware and software optimization are
integrated

4.5 A

4.0 1

3.5 1

3.0 1

EMD

2.5 1

2.0 A

1.5

1.04,

Occupancy [1 MIPy cells]

ECON-T - Baseline Model Architecture

Model: "encoder"

- 4x4x3 data reshaped into 8x8x1 Layer (type) Gutput Shape Param #
input o ((ggrﬁ%%er) E(hllqc?nn:’f’f'f:))] 80
. . flatten (Flatten) (None, 128) 0
- Model architecture is very small encoded_vector (Dense) (None, 16) 2064

amounting to just 4,977 trainable pafaers2

Non-trainable params: 0

parameters
Model: "decoder”
- Trained for 100 epochs with Cayer (5p9) OuputShape Param #
i decoder_input (InputLayer) [(None, 16)] 0
batCheS Of Size 800 dense (Dense) (None, 128) 2176
. hape (Reshape) (None, 4, 4, 8) 0
= ACh|eveS EM D Of 1 . 067 giivz%itraﬁzpﬁgz (Conv2DTranspose) (Ngzz, 8,8,8) 584
conv2d_transpose_1 (Conv2DTranspose) (None, 8, 8, 1) 73

decoder_output (Activation) (None, 8,8,1) 0

Total params: 2,833
Trainable params: 2,833
Non-trainable params: 0

Hyperparameter Optimization and Model Architecture
Exploration

- The baseline model architecture created through Model loss 8xB_c8_52_tele

human trial and error, and heuristics behind —
autoencoders
- Optimization explores architectures and
hyperparameters that provide better performance
- Search is automated and iterative,

100 4

Loss

- On each iteration a set of parameters is chosen
based off of previous trials to:
- Exploit space of parameters of which it knows produces good 102
performance and optimize that performance further . . ‘ .
- Explore the spaces where there is uncertainty in whether that ° * P e » o

parameterization will produce a good model

Bayesian Optimization

- Works upon Bayes Rule

- Start with surrogate model representing prior belief about model parameters
and performance

- This model is updated iteratively after the new parameterizations are sampled

- Each new parameterization is used to create a network and train that network
for a certain amount of epochs to produce a EMD metric

- The surrogate model is

then updated based | |
upon the EMD /\ — |

Posterior

= Predicted (u)
= Ground Truth (f)
uxo
. Last Added Point
2 s . s .
X

o 1

Framework for hyperparameter search using
Bayesian Optimization
Need to provide:

- Definition of each hyperparameters to be optimized and
domain parameters

- Function with parameterization as input that constructs \/H/\&/\

the network, does training, and returns a metric optimize P — cestmat CPunceriainty & § Daia

(EMD) - ~ '
No support for conditional constraints on
hyperparameters
Ax can’t choose number of each type of layer
Hybrid approach: do grid search for each
combination of CNN and dense layers then use
Ax for hyperparameter optimization within each
grid cells

Online metric

Adaptive ASHA

- Adaptive Asynchronous Successive Halving Algorithm

- SHAruns all model trials for a set duration in first iteration then discards lower performing
half of trials

- Process repeated until models are narrowed down to threshold and stopping conditions are
reached

- Instead of the algorithm waiting for full information to be obtained for all models at each
iteration, only the a minimum amount of information is need to move to further testing

- Results in models that don’t get hung up on underutilized models that are still training

L. o* oo

Grid Search Random Search Adaptive Selection

Determined.al

- Uses Adaptive ASHA for hyperparameter optimization

- Combination of CLI and high level web interface tools allows visualization of training metrics
and multiple experiments in real time

- Conditional hyperparameter constraint support means in addition to searching
hyperparameters the algorithm can also search number of layers

- Need to provide:
- Hyperparameters and their domains and constraints
- Functions to load training/testing data and build optimizer, model, and callbacks

Successive Halving (Asynchronous) S . Jobs for each Worker

Resource Efficiency: 100%

Configurations in ea

rung 2 3 rung 2 3

Rl] | i bk | 1 T L [0 [| B
20 a0 60 80 100 120 140 160 2 4 6 8 10
Hyperparameter Configurations Workers

Compute for Model Training and Optimization

- Single ECON-T autoencoder model can be trained locally

- Local compute for hyperparameter optimization isn’t possible

- Both Ax, and Determined.ai optimizations are run on Fermilab’s Elastic
Analysis Facility

- Allows training through JupyterHub and Determined’s own web interface

- Thanks to Burt Holzman and Ben Hawks for helping setting up user accounts
and Determined instance

. for i in range(0, cnn_layers+l):
H ype rpa ra m ete r D O m a I n S ax parameters.append({"name": f"filters {i}",
"type": "choice",
"is ordered": True,
"value type": "int",

- Up to 3 CNN layers and 3 Dense layers "values": [0,2,4,8,16,32,64]})

ax_parameters.append ({"name": f"kernel {i}",

- For each CNN layer e e
- Number of filters in the layer "value_type": "int",
i "values": [1,3,5]})
= Kernel SIZG ax parameters.append({"name": f"pooling {i}",
"type": "choice",

- Stride

"is_ordered": True,

- Whether to include pooling layer after "value_type": "bool",
"values": [True,Falsel})
= For eaCh Dense Iayer ax parameters.append({"name": f"stride {i}",
. i "type": "choice",
- Number of units in the layer yfdd True,
"value type": "int",

- FUture "values": [1,2,4]1})
_ BatCh SIZG for i in range(0, dense_ layers+l):
ax parameters.append({"name": f"units {i}",

- Learning rate "typer: "choice”,

"is ordered": True,
"value type": "int",

"values": [16,32,64]})

Ax - Results

EMD | EMD_error | filters_1 |kernel_1| pooling_1 | stride_1 | filters_2 | kernel_2 | pooling_2 | stride_2 | units_1 | units_2 units_3 | filters_3 | kernel_3 | pooling_3 | stride_3
1.365 0.424 32 5 FALSE 4 16 3 FALSE 4

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.467 0.41 8 5 TRUE 1

1.48 0.449 8 5 FALSE 2 4 5 TRUE 1 0 5 TRUE 1
1.521 0.489 32 5 FALSE 2 32 1 TRUE 1 4 3 TRUE 2

Results from Ax using Bayesian optimization/Grid search hybrid approach. Each trial
was trained for 20 epochs. There were 15 trials per grid tile.

Pareto Fronts

- Pareto front is line on which optimal parameterizations exist
- Parameterizations on Pareto front trade off between EMD and OPs
- Anincrease in OPs corresponds to increase in size of model on chip

100000

100000
Y ° ® X -
80000 - . 80000 - .
[J ® ™Y []
o o ® o ®
60000 A ® ° “ 60000 - : " o®
o o - - ® .. &) ® ® L4 [] ‘
 J o® ©)) °
40000 - ° o 40000 - o
) o ° - ° o % - °
X - X A -
[J e® o © b o906y O ® ®
200001 o %.“ ° ° ™ ® 20000 - % & O.f .'. ® - A
eQ o } e & s ° 309 %2 o
o v_,:’ oo, o % . 4 Po] Ce
O ’ ® - g T l. O ,_. T u T T
0.4 0.6 0.8 1.0 1.2 1.4 1.€ 1.0 1.5 2.0 2.5 3.0 3.5 4.0
error EMD

Ax - Results

8000

6000

Entries

2000

0
0.00 025 050 0.75 1.00 125 150 175 2.00

0.5 1.0 15 2.0 2.5 3.0 3B
earth movers distance

8x8 c8 k5 pTrue_S1 tele

4000

earth movers distance

8x8_c64 k3 _pFalse_S1_tele

tries

& 4000 1

hist_EMD_a|

0
025 050 075 1.00 1.25 150 175 2.00

earth movers distance

8x8 c32 k3 pFalse _S1 tele

8000 1

6000 1

ntries

* 4000 4

2000 4

0.5 1.0 15 2.0 2.5
earth movers distance

8x8 c16_k3 pTrue_S1 tele

8x8 c64 S1 tele EMD: 0.680
- 1 CNN layer, filters 64, kernel size (3,3),
stride 1
- No Max pooling layer

8x8 c8 S2 tele EMD of 1.067
- 1 CNN layer, filters 8, kernel size (3,3),
stride 1
- No Max pooling layer

8x8 c8 S2 tele FLOPS: 6544
8x8 c64 S1 tele FLOPS: 208912
36% reduction in EMD

309% increase in FLOPS

Sherlock

- Designed specifically for parameter __
.. . . . [Initialize]

optimization in FPGA synthesis T
- Uses active learning to sample —>{ Su"ogaie model] g i
i ' : “Exploit” :
parameterization and model pareto (Pareto hypotresis | | xploit i
front
- Samples from gaussian process, | Explore |
random foreSt, and radlal b|aS ¢ Increase Decrease + """""" /:r\ -----------

function as the surrogate model [Keep sampling] [Change sampling }

method method
[|

Future Work

- Hyperparameter optimization via Determined.ai

- Model and hardware parameter optimization via Sherlock

- Use hls4ml to generate code to transpile to FPGA firmware via
High-Level Synthesis libraries

- Test performance on FPGA

hils 4 ml

