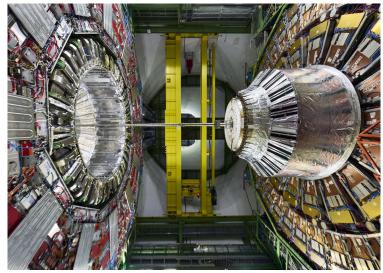
## Autoencoder Optimization for Data Compression in front-end ASICs

### **Quinlan Bock**

Advisors: Nhan Tran, Ben Hawks

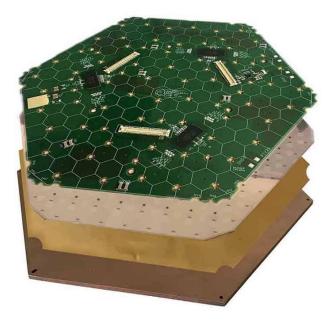
#### Background - CMS

- Compact Muon Solenoid Experiment (CMS) at CERN's LHC upgraded with high-granularity calorimeters (HGCAL)
- HGCAL includes ~6.5 million readout channels
- Collisions occur at a rate of 40Mhz
- High radiation environment creates undesirable faults
- Transport data from collisions to trigger systems
- Trigger systems decide data represents interesting particles and if to store for offline analysis
- Reduce latency and improve throughput by using ASICs and FPGAs for compression and triggering



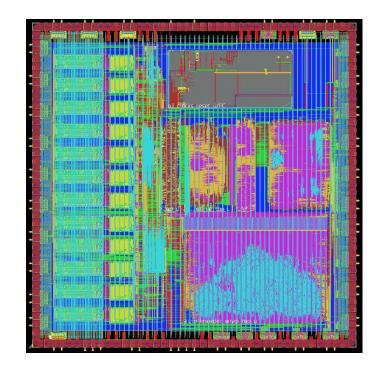
#### **Background - Need for Data Compression**

- Latency too high to process all the data from HGCAL uncompressed
- Compression algorithm that can handle the unstructured data
- Data compression allows more data transmit further down the data pipeline
- Latency requirements higher near triggering and storage where data can be uncompressed and processed



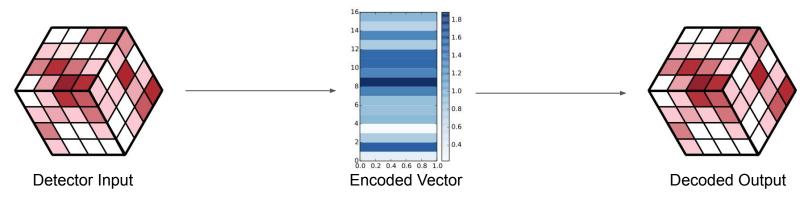
#### Background - Speed, Size, and Power Constraints

- Data compression must be quick to handle amount and frequency of the data being generated
- Compression algorithm must run on ASICs for latency
- ASICs limits on power consumption, and physical size limits size compression algorithm
- Places an upper bound on complexity of compression algorithm



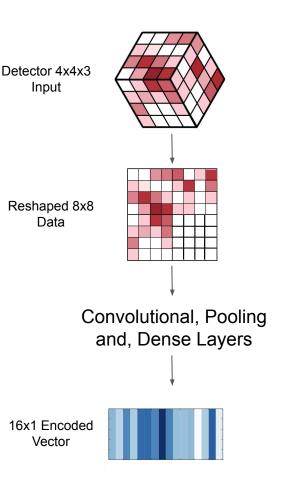
#### **Background - Auto Encoders**

- Autoencoders: specific neural network where output of the network is the same size as the input
- Minimize the loss between the input and the output
- Network consists of an encoder and a decoder
- Encoder feeds input to neural network layers and produces smaller encoded tensor
- Decoder takes encoded tensor and works to recreate the input to the encoder



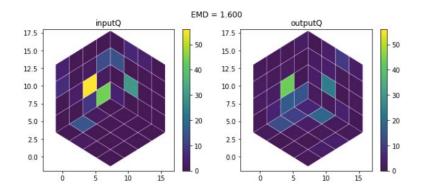
#### ECON-T

- The ECON-T contains an autoencoder model developed specifically for encoding data from HGCAL
- Written in python using Tensorflow and Keras
- Each model takes as its input the 4x4x3 shaped data and produces an encoded vector of size 16
- Model layers can include CNN layers, pooling layers, and dense layers
- Various functions used to compute loss however telescoping loss is used for original training
- Earth Mover's Distance (EMD) used as additional metric to quantify the distance between the input and reconstructed input



#### EMD

- Distance function between two probability functions
- Amount of shading needed to change for images to match

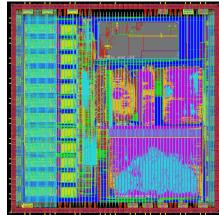


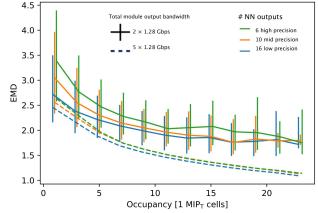
#### **Telescoping Loss**

- Associate shape information to each trigger cell (TC)
- Form 4x4, 2x2 super cell (SC) groupings
- Weight TCs less corresponding to how many SCs they appear in
- Mask SC groupings and add differences between input and reconstructed TCs, and SCs
- Associates the loss at multiple scales

#### Multi-objective optimization

- Hardware optimization for size, latency, OPs, and power
- Software optimization for reconstruction performance (EMD, telescoping loss)
- Optimizing both hardware and software can not be done separately since they both impact each other
- Nessicates co-design process where hardware and software optimization are integrated





#### **ECON-T - Baseline Model Architecture**

- 4x4x3 data reshaped into 8x8x1 input
- Model architecture is very small amounting to just 4,977 trainable parameters
- Trained for 100 epochs with batches of size 800
- Achieves EMD of 1.067

#### Model: "encoder"

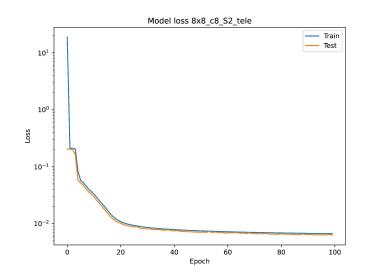
| Layer (type)                                                                           | Output Shape                                                      | Param #              |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|
| input_1 (InputLayer)<br>conv2d (Conv2D)<br>flatten (Flatten)<br>encoded_vector (Dense) | [(None, 8, 8, 1)]<br>(None, 4, 4, 8)<br>(None, 128)<br>(None, 16) | 0<br>80<br>0<br>2064 |
| Total params: 2,144<br>Trainable params: 2,144<br>Non-trainable params: 0              |                                                                   |                      |

Model: "decoder"

| Layer (type)                                                                                                                                                                                  | Output Shape                                                                              | Param #                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|
| decoder_input (InputLayer)<br>dense (Dense)<br>reshape (Reshape)<br>conv2d_transpose (Conv2DTranspose)<br>conv2d_transpose_1 (Conv2DTranspose)<br>decoder_output (Activation) (None, 8, 8, 1) | [(None, 16)]<br>(None, 128)<br>(None, 4, 4, 8)<br>(None, 8, 8, 8)<br>(None, 8, 8, 1)<br>0 | 0<br>2176<br>0<br>584<br>73 |
| Total params: 2,833<br>Trainable params: 2,833<br>Non-trainable params: 0                                                                                                                     |                                                                                           |                             |

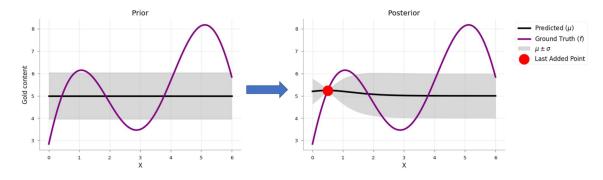
# Hyperparameter Optimization and Model Architecture Exploration

- The baseline model architecture created through human trial and error, and heuristics behind autoencoders
- Optimization explores architectures and hyperparameters that provide better performance
- Search is automated and iterative,
- On each iteration a set of parameters is chosen based off of previous trials to:
  - Exploit space of parameters of which it knows produces good performance and optimize that performance further
  - Explore the spaces where there is uncertainty in whether that parameterization will produce a good model



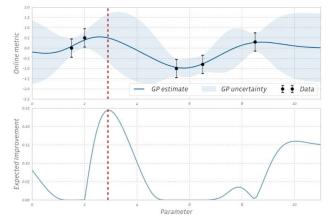
#### **Bayesian Optimization**

- Works upon Bayes Rule
- Start with surrogate model representing prior belief about model parameters and performance
- This model is updated iteratively after the new parameterizations are sampled
- Each new parameterization is used to create a network and train that network for a certain amount of epochs to produce a EMD metric
- The surrogate model is then updated based upon the EMD



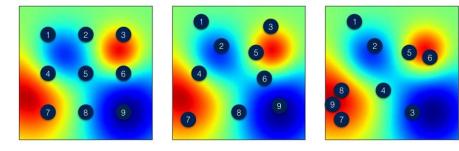
#### Ax

- Framework for hyperparameter search using Bayesian Optimization
- Need to provide:
  - Definition of each hyperparameters to be optimized and domain parameters
  - Function with parameterization as input that constructs the network, does training, and returns a metric optimize (EMD)
- No support for conditional constraints on hyperparameters
- Ax can't choose number of each type of layer
- Hybrid approach: do grid search for each combination of CNN and dense layers then use Ax for hyperparameter optimization within each grid cells



#### Adaptive ASHA

- Adaptive Asynchronous Successive Halving Algorithm
- SHA runs all model trials for a set duration in first iteration then discards lower performing half of trials
- Process repeated until models are narrowed down to threshold and stopping conditions are reached
- Instead of the algorithm waiting for full information to be obtained for all models at each iteration, only the a minimum amount of information is need to move to further testing
- Results in models that don't get hung up on underutilized models that are still training



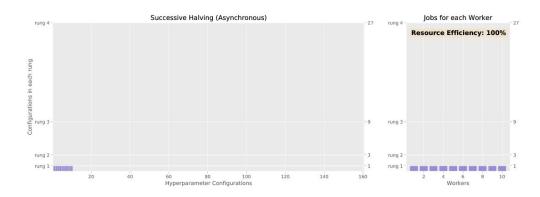
Grid Search

Random Search

Adaptive Selection

#### Determined.ai

- Uses Adaptive ASHA for hyperparameter optimization
- Combination of CLI and high level web interface tools allows visualization of training metrics and multiple experiments in real time
- Conditional hyperparameter constraint support means in addition to searching hyperparameters the algorithm can also search number of layers
- Need to provide:
  - Hyperparameters and their domains and constraints
  - Functions to load training/testing data and build optimizer, model, and callbacks



#### Compute for Model Training and Optimization

- Single ECON-T autoencoder model can be trained locally
- Local compute for hyperparameter optimization isn't possible
- Both Ax, and Determined.ai optimizations are run on Fermilab's Elastic Analysis Facility
- Allows training through JupyterHub and Determined's own web interface
- Thanks to Burt Holzman and Ben Hawks for helping setting up user accounts and Determined instance

#### Hyperparameter Domains

- Up to 3 CNN layers and 3 Dense layers
- For each CNN layer
  - Number of filters in the layer
  - Kernel size
  - Stride
  - Whether to include pooling layer after
- For each Dense layer
  - Number of units in the layer
- Future:
  - Batch size
  - Learning rate

```
for i in range(0, cnn layers+1):
        ax parameters.append({"name": f"filters {i}",
                            "type": "choice",
                                 "is ordered": True,
                                 "value type": "int",
                                "values": [0,2,4,8,16,32,64]})
        ax parameters.append({"name": f"kernel {i}",
                                            "type": "choice",
                                            "is ordered": True,
                                            "value type": "int",
                                            "values": [1,3,5]})
        ax parameters.append({"name": f"pooling {i}",
                                            "type": "choice",
                                            "is ordered": True,
                                            "value type": "bool",
                                            "values": [True, False]})
        ax parameters.append({"name": f"stride {i}",
                                            "type": "choice",
                                            "is ordered": True,
                                            "value type": "int",
                                            "values": [1,2,4]})
for i in range(0, dense layers+1):
        ax parameters.append({"name": f"units {i}",
                                "type": "choice",
                                "is ordered": True,
                                "value type": "int",
```

"values": [16,32,64]})

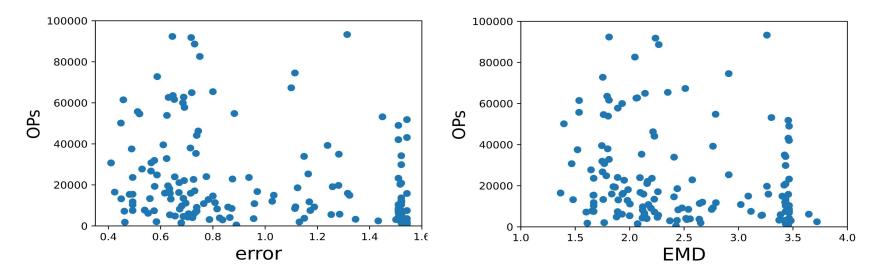
#### Ax - Results

| EMD   | EMD_error | filters_1 | kernel_1 | pooling_1 | stride_1 | filters_2 | kernel_2 | pooling_2 | stride_2 | units_1 | units_2 | units_3 | filters_3 | kernel_3 | pooling_3 | stride_3 |
|-------|-----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|---------|---------|---------|-----------|----------|-----------|----------|
| 1.365 | 0.424     | 32        | 5        | FALSE     | 4        | 16        | 3        | FALSE     | 4        |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.467 | 0.41      | 8         | 5        | TRUE      | 1        |           |          |           |          |         |         |         |           |          |           |          |
| 1.48  | 0.449     | 8         | 5        | FALSE     | 2        | 4         | 5        | TRUE      | 1        |         |         |         | 0         | 5        | TRUE      | 1        |
| 1.521 | 0.489     | 32        | 5        | FALSE     | 2        | 32        | 1        | TRUE      | 1        |         |         |         | 4         | 3        | TRUE      | 2        |

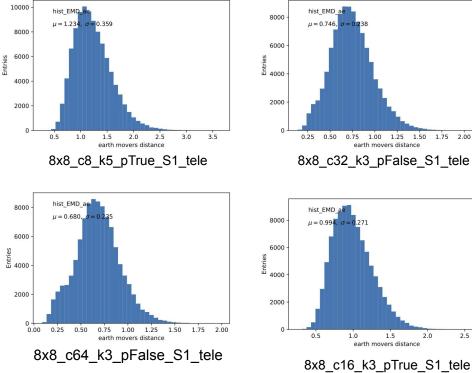
Results from Ax using Bayesian optimization/Grid search hybrid approach. Each trial was trained for 20 epochs. There were 15 trials per grid tile.

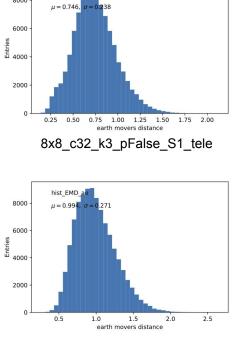
#### Pareto Fronts

- Pareto front is line on which optimal parameterizations exist
- Parameterizations on Pareto front trade off between EMD and OPs
- An increase in OPs corresponds to increase in size of model on chip



#### Ax - Results



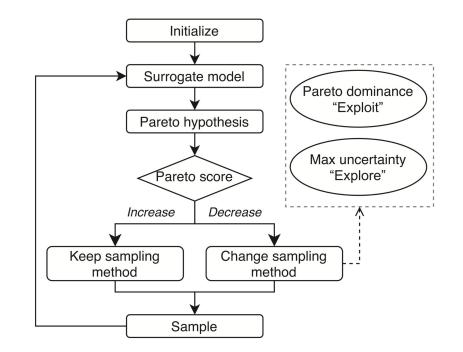


8x8 c64 S1 tele EMD: 0.680 \_

- 1 CNN layer, filters 64, kernel size (3,3), \_ stride 1
- No Max pooling layer -
- 8x8 c8 S2 tele EMD of 1.067
  - 1 CNN layer, filters 8, kernel size (3,3), \_ stride 1
  - No Max pooling layer -
- 8x8 c8 S2 tele FLOPS: 6544 \_
- 8x8 c64 S1 tele FLOPS: 208912 \_
- 36% reduction in EMD \_
- 309% increase in FLOPS \_

#### Sherlock

- Designed specifically for parameter optimization in FPGA synthesis
- Uses active learning to sample parameterization and model pareto front
- Samples from gaussian process, random forest, and radial bias function as the surrogate model



#### **Future Work**

- Hyperparameter optimization via Determined.ai
- Model and hardware parameter optimization via Sherlock
- Use hls4ml to generate code to transpile to FPGA firmware via High-Level Synthesis libraries
- Test performance on FPGA



