		RTM Commander Program Manual

RTM Commander Program Manual V 1.0
AUTHOR: Parker Landon - plandon@fnal.gov
AD Instrumentation, Fermi National Accelerator Laboratory

PROGRAM: RTM_Commander.INO
PROGRAM START DATE: 7/12/2022
DOCUMENTATION START DATE: 7/15/2022
DOCUMENTATION END DATE: 7/15/2022

Table of Contents:

	Section Name
	Description
	Page(s)

	Hardware
	The list of hardware managed by the program and links to their datasheets
	
3

	LED Codes
	Definitions for lit LEDs
	3

	Software Top-Down Review
	A simplified overview of the program
	
4-6

	Program Trace
	A full-scale program trace with libraries defined
	7

	Library Documentation List
	Listed libraries and their documentation
	
7

	Functional Traces
	Traces of each function and subfunction with descriptions, inputs, outputs, and associated library
	
8-11

	#define/Variable List
	A list of all variables in the program, their value, and relation to other variables
	
12-13

	Assumptions/Things to Know
	Assumptions made during programming, and basic concepts to know when using the program
	
13

	Possible Errors
	A list of possible errors, their locations, and their fixes
	13

Hardware:
[image: SparkFun SAMD21 Mini Breakout - DEV-13664 - SparkFun Electronics]					Sparkfun SAMD21G Mini Breakout:
					SparkFun SAMD21 Mini Breakout - DEV-13664 - SparkFun Electronics

[image: I2C EEPROM - 256k Bit (24LC256) - COM-00525 - SparkFun Electronics]
					24LC256 EEPROM:
					24LC256 | Microchip Technology

[image: 8-pin (D) package image]
					TMP175 Temperature Device:
					TMP175-Q1 data sheet, product information and support | TI.com

LED Codes:
· Blue solid: Verification completed
· Red solid: Analog/EEPROM/Temp read/write in progress (DO NOT REMOVE CARD)
· Green Solid: Safe for card removal NOT IMPLEMENTED AT THE TIME OF THIS DOCUMENT

Software Top-Down Review:
This code is written in the C language. Most of the functions used are built-in libraries with documentation listed below.
The program can be thought as two programs that are ran together. We have the main thread (program branch) that does actual processing, and a monitor thread that controls what is being processed.
[image:]

Stepping into Initialize/Verify, we begin to set up both the Serial (115200 Baud) and I2C (400kHz) buses. Three pins are set as IO outputs to drive the blue, green, and red LEDs. Another pin is set to be an input for a trigger. Setting this trigger high will send data from the four ADCs over serial.
[image:]

The section defined as “Check if there is EEPROM” will stop the program if no EEPROM is available on the I2C bus. Lastly, Initializing the children produces two child threads: Monitor and I2C.

After completing the initialization and verification, the blue LED will be set low, turning it on. AT THE TIME OF THIS DOCUMENT LOW IS ON HIGH IS OFF. Two children threads can then be scheduled to run. Either the Sequencer in loop() or the FreeRTOS built-in scheduler will decide which thread runs on the CPU. AT THE TIME OF THIS DOCUMENT ONLY THE SEQUENCER IS FULLY IMPLEMENTED. This means that a counter will toggle which branch we take (e.g. Monitor runs then I2C). However, the functionality of the code is essentially the same using either sequencer or a FreeRTOS schedule.
The child thread Monitor will decide which tasks the child thread I2C will complete. This is done through global Boolean flags. Below is a figure for a possible handshake for the children.
[image:]

After completing a cycle of processing, the program repeats. For every cycle Monitor is ran, it may change the flags given different inputs. These inputs include the EEPROM read flag, Temperature read flag, the trigger flag. The first two flags outline their purpose, where the trigger flag branches to the ADCs. I2C will service each process, then complete the task by setting the flag to FALSE.

Program Trace:
[image:]

Library Documentation list:
Arduino – https://www.arduino.cc/reference/en/libraries/
SparkFun External EEPROM – http://librarymanager/All#SparkFun_External_EEPROM
FreeRTOS – https://github.com/BriscoeTech/Arduino-FreeRTOS-SAMD21/blob/master/src/FreeRTOS_SAMD21.h
Wire Library – https://www.arduino.cc/reference/en/language/functions/communication/wire/
External Temperature Library – https://github.com/jeremycole/Temperature_LM75_Derived
Functional Traces:
void setup()
// HEADER: void setup()
// DESCRIPTION: Init Monitor thread
// init serial communication for debugging
// init Wire lib
// init pins for LED and Triggering
	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	SerialUSB.begin
	Initialize Serial bus over USB
	(BAUD_RATE);
	none
	Arduino

	vNopDelayMS
	Delay serial to limit bus crashes
	(DELAY_TIME);
	none
	Arduino/FreeRTOS

	pinMode
	Set IO pins to either input or output
	(PIN_LOCATION, OUTPUT or INPUT);
	none
	Arduino

	Wire.begin
	Define an I2C connection called “Wire”. You can also change the name (e.g. Wire1.begin makes a channel called Wire1).
	none
	none
	Wire

	Wire.setClock
	Set the clock speed of the I2C channel. Again the beginning word defines which wire is being called
	(CLOCK_SPEED);
	none
	Wire

	myMem.begin
	Check the I2C bus to see if an EEPROM is available
	(EEPROM_ADR, I2C_NAME);
	Boolean
	External Temperature Library

	xTaskCreate
	Create a child thread given several parameters.
	((TaskHandle_t) CHILD_NAME,
(char*) CHILDS_TASK,
STACK_SIZE (in words),
TASK_INPUTS,
TASK_PRIORITY,
&TASK_HANDLE);
	BaseType_t
	FreeRTOS

// fork children threads

void loop()

/***/
// HEADER: void loop()
// DESCRIPTION: Contains sequencer that controls
// each child
//
/***/

	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	Monitor
	Child thread made by xTaskCreate. This thread will monitor I2C and control what functions it uses.
	(void * parameters)
	none
	Custom/FreeRTOS

	I2C
	Child thread made by xTaskCreate. This thread will manage the I2C bus and ADCs. This thread is controlled by Boolean flags that are changed by Monitor.
	(void * parameters)
	none
	Custom/FreeRTOS

void Monitor(void * parameters)

/***/
// HEADER: void Monitor(void * parameters)
// DESCRIPTION: This thread will control where
// the I2C thread branches to.
//
/***/
	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	digitalWrite
	Writes a voltage value to IO pin
	(PIN_LOCATION, VOLTAGE);
	none
	Arduino

	digitalRead
	Reads a voltage value from IO pin
	(PIN_LOCATION);
	HIGH or LOW
	Arduino

void I2C(void * parameters)

/***/
// HEADER: void I2C(void * parameters)
// DESCRIPTION: I2C thread. This thread will branch
// to any I2C follower device function.
// This thread is also controlled by
// the "Monitor" thread.
/***/
	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	digitalWrite
	Writes a voltage value to IO pin
	(PIN_LOCATION, VOLTAGE);
	none
	Arduino

	ReadEEPROM
	This function uses the I2C bus to read the entire memory of the EEPROM
	none
	none
	Custom

	temperature.readTemperatureF
	Read the current temperature in degrees Fahrenheit and print to serial
	none
	float
	External Temperature Library

	ReadADCs
	Read out the current ADC values and print to serial
	none
	none
	Custom

void ReadADCs()
/***/
// HEADER: void ReadADCs()
// DESCRIPTION: This function reads all ADCs
// and prints it to serial. The amount
// of times it reads is controlled by
// "ADC_COUNTER"
//
/***/
	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	analogRead
	Read the data on an IO pin
	(PIN_LOCATION);
	int
	Arduino

void ReadEEPROM()
/***/
// HEADER: void ReadEEPROM()
// DESCRIPTION: This function reads the entire EEPROM
// and prints it to serial
//
/***/
	Subfunctions
	Task Description
	Inputs
	Outputs
	Library

	myMem.get
	Get the value at the defined memory location. You can have multiple devices and connect to different ones by defining the name (e.g. Mem1.get and Mem2.get)
	(long MEMORY_LOCATION, byte HOLDING_VAR);
	none
	SparkFun External EEPROM

#define/Variable List

	Name
	Value
If device dependent
	Description
	Reliant on Other Variables?

	EEPROM_ADR
	0x50
	EEPROM Address. (1010 a0 a1 a2) setting all pins low gives 0x50
	no

	TEMP_ADR
	0x48
	Temperature Device Address. (1001 a0 a1 a2) setting all pins low gives 0x48
	no

	MEMORY_SIZE
	0x7D00
	32Kb memory size of the EEPROM
	no

	CLOCK_SPEED
	400000
	I2C Clock speed. Can be changed, documentation states limitations
	no

	BAUD_RATE
	115200 or 9600
	Serial Baud rate
	no

	NUMOFSENSORS
	4
	Number of ADCs on Commander
	no

	VOLTAGERANGE
	3.3
	Voltage range of incoming signal
	no

	ADC_COUNTER
	100
	The number of times ADC values will be sent of serial
	no

	RESOLUTION
	1023.0
	Commander resolution for ADC conversion
	no

	temperature
	n/a
	Temperature device definition. DO NOT CHANGE UNLESS DEVICE IS CHANGED
	Yes, dependent on device initialization: Generic_LM75 temperature;

	RED
	2
	Pin location for LED
	no

	GREEN
	3
	Pin location for LED
	no

	BLUE
	4
	Pin location for LED
	no

	TRIGGER
	7
	Pin location for trigger input.
TODO: CURRENT PIN IS 7 SHOULD BE 6 FOR FUTURE BOARDS
	no

	BLUE_FLAG
	false
	Blue LED flag
	

	RED_FLAG
	false
	Red LED flag
	

	GREEN_FLAG
	false
	Green LED flag
	

	TRIGGER_FLAG
	false
	Trigger flag
	

	EEPROM_FLAG
	false
	EEPROM Read flag
	

	TEMPER_FLAG
	false
	Temperature flag
	

	SEQ_COUNT
	0
	Sequencer Count
	Yes, needs to be less than SEQ_LIM

	SEQ_LIM
	10
	Sequencer Count limit
	

	WATCHDOG
	0
	Hard-coded watchdog timer for preliminary testing
	Yes, set to zero to prevent runtime errors

Assumptions/Things to Know:
· Many of the loops that run multiple cycles of read/writing data are predefined at the top of the code using #define. Alteration of these values can change code functionality, please read the #define list before-hand.
· If the red LED is on, this means that memory is being read/written. DO NOT REMOVE DEVICES, it can cause data corruption.
· In this program it is assumed that each service is ran to completion. If this does not occur, and or a thread becomes starved, a watchdog timer has been added to reset timers. *THIS IS NOT FULLY IMPLEMENTED AT THE TIME OF THIS DOCUMENT*

Possible Errors:
	Error
	Possible Problem Location
	Reason
	Fix

	COM failing
	Initialization
	Faulty USB connection
	Checking COM Port for Serial Port Monitor.
Unplugging and plugging back in.

	Spinning in initialization state (no Blue LED)
	Initialization
	Faulty or incorrect wiring for I2C bus
	Check wire connections for SDA and SCL as well as pins a0-a3 for the correct addressing.

	“No Memory Detected”
	Initialization
	EEPROM damaged, removed, or incorrectly wired
	Check wiring or replace EEPROM.

	"WATCHDOG ERROR - RESETTING PARAMS"
	loop
	Child threads not completing service routine.
Scheduler may be starving systems.
Children may be too large to complete in current schedule.
	Change Scheduler or remove long functions from child threads.

	Continually reading /reading only sections from EEPROM
	ReadEEPROM() or #define MEMORY_SIZE
	No defined memory size or incorrect size
	Check documentation before altering #defines as the memory size varies from device.

2

2

image2.jpeg

image3.png

image4.png
Child
Thread

Initialize/Verify

Read — Temp
and/or EEPROM

Monitor

Trigger?

Read — ADC

image5.png
Initialize/Verify

Define 10 Pins

Set up Serial and 12C

Check if there is
EEPROM

Initialize Children

image6.png
Initialize/Verify

Monitor

Should | Check the

EERPOND Nope not yet.

Iff Eus How about the
temperature?

iD_CS Did we get the
trigger for ADC?

image7.png
RTM Commander Trace

Library Legend

void

Custom Function

Arduino Functions

SparkFun External
EEPROM

FreeRTOS Library

Wire Library.

External Temperature,
Library

Gradient with white defines a
customized ibrary.
(FreeRTOS with Custom settings)

setup()

digitalWrite(LED VALUE);

ReadEEPROM();

R

myMem.get(MEM_LOCATION HOLDING_VAR);

temperature readTemperatureF (;

ReadADCS();

R

analogRead(ADC_PIN);

void 2C(void * parameters)

Task Completed, Terminate

Sequencer o
‘Scheduler

12 (Child)

AUTHOR: Parker Landon
CONTACT. plandon@inal gov

‘SerialUSB begin(BAUD_RATE):

VNopDelayMS(SETUP_DELAY);

pinMode(LED, OUTPUT);

Wire begin();

Wire setClock(CLOCK_SPEED)

myMem begin(EEPROM_ADR, Wire)

xTaskCreate(
FUNTION_NAVE,
(char*) TASK_NAME,
(in words) STACK_SIZE,
TASK_INPUT.
TASICPRIORITY,
STASK_HANDLE);

Monitor (Child)
void Monitor(void * parameters)

digitalWrite(LED VALUE);

digitalRead(TRIGGER);

Task Completed, Terminate

image1.jpeg

