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Superconducting materials

Superconductor:

Material which achieves superconductivity, a state of matter that has no
electrical resistance

Extremely important for accelerators, because they can generate strong
magnetic fields which provide strong bending and focusing of the beam

Requires very low temperatures: Fermilab best magnets need 1.9 K to
provide 14.6 T
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Quench antennas

Quench: sudden and irreversible transition of the
superconductor into the normal-conducting state

After the quench, the energy stored in the magnet must be
dissipated in order to protect the magnet

Quench antennas: pick-up coil arrays sensitive to changes in
the magnetic flux ⇒ provides quench identification and
localization
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Voltage changes

Quench antennas measure

activity along the ramp, all the

way to quench, at which point

current is extracted from the

magnet

Once the quench happens,
a dump resistor is switched
on to convert magnetic
energy into thermal energy
in the dump resistor
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Voltage spikes along the ramp caused by many possible
reasons, some of which are:

Current redistribution within the cable
Frictional slipping of the cable
Vibration of the magnets
Epoxy cracks
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Aim of my work

My job is to analyse the data provided by the quench antennas, finding
the events prior to the quench, in order to find some specific features
These features will then be fed to an unsupervised ML clustering
algorithm in order to classify the events
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Filter

To eliminate the background noise (ν = 4.54 kHz), a
third-order Butterworth bandstop filter was implemented,
allowing only frequencies lower than 4 kHz and higher than
5 kHz
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Integral

To evaluate the magnetic flux received by the quench antennas, I evaluated the
integral of the voltage
The integral was performed using the trapezoid method on the voltage signal
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Event Selection

Looking for events prior to the quench, νsamp = 25 kHz
From a continuous waveform, trying to build windows around the
selected events
Event selected when there are values above the positive threshold
and below the negative threshold close to the positive peak
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Threshold analysis
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Figure: Plot representing the events found using different thresholds, for both
the raw signal and the filtered signal. The thresholds were selected between
1 mV and 4 mV
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Threshold analysis: number of events found

Threshold (mV) Raw data Bandstop Filter data

1 147 95
1.2 90 66
1.4 67 51
1.6 51 45
1.8 36 35
2 31 32
2.2 27 25
2.4 24 18
2.6 22 17
2.8 20 14
3 17 14
3.2 13 13
3.4 13 11
3.6 12 10
3.8 11 7
4 10 6
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Features matrix

Prior to performing ML techniques, I first need to identify some features
which will be used for the clustering

Features extracted from each event, both for raw and filtered signal

The features will then be added to a matrix, which will then be fed to an
unsupervised clustering algorithm to identify the representative events
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Description of features

I divided the features in four main categories:
1 Voltage signal features

Maximum and minimum value of the voltage
Norm of the voltage array

2 Integrated signal (magnetic flux) features :

Maximum and minimum value of the integrated voltage
Norm of the integrated voltage array
Definite integral of the voltage

3 Signal shape:

Width and tail of the signal
Signal length

4 Fast Fourier Transform (FFT) features:

Peak frequency
Distribution of frequencies obtained with FFT analysis
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Plots displaying some features, both raw and filtered
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Summary and next steps

Goal: use Machine Learning to identify and learn about the
disturbances in high field superconducting accelerator magnets

Achieved so far:

1 Build a routine to automatically extract windowed events from
continuous data

2 Analysis of windowed events for signal characteristics, signal
shape and frequency distribution

Next steps:

1 Finalize FFT analysis on the signal
2 Perform unsupervised k-means clustering on feature matrix
3 Implement a Neural Network to identify the events and check

prediction power on more data
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Thank you for the attention
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