August 29, 2022

Eleonora Ponticelli

EXPLOITING THE PRISM FEATURE OF THE Short baseline near detector

MIDTERM REPORT

Supervisors: Ornella Palamara Marco Del Tutto

THE SHORT BASELINE NEUTRINO PROGRAM AT FERMILAB

• Three Liquid Argon Time Projection Chamber (LArTPC) detectors located along the Booster Neutrino Beamline (BNB).

Aims:

- Resolving the question of the existence of sterile neutrinos, searching in the eV-mass scale, along with other BSM searches.
- Studying neutrino-Argon interactions at the GeV energy scale, leading cross-section measurements
- Developing LArTPCs technology.

NEUTRINO BEAM: BNB AND FLUX

NEUTRINO BEAM: BNB AND FLUX

NEUTRINO INTERACTIONS

Charged Current

Neutral Current

NEUTRINO INTERACTION MODES

I. Quasi Elastic Interaction

2. Meson Exchange Current

3. Resonant Interaction

4. Deep Inelastic Scattering

DETECTING NEUTRINOS: LARTPCS

Uniform Electric Field

$$v_{\mu} + Ar \rightarrow \mu^{-} + X$$

$$\downarrow$$

$$(\cdot Ar^{+} + e^{-} \rightarrow Sense Wires$$

$$\cdot Ar^{*} \rightarrow Ar + \gamma \rightarrow Photon Detection$$
System

Sense Wires

3 wire planes: a vertical one and two rotated by 60° O(10 ns), which provides one to another to achieve 3D tracks recostruction

PDS

fast response time signals for triggering

- 3D Imaging
- Geometrical & Calorimetrical Recostruction

DETECTING NEUTRINOS: LARTPCS

- 3D Imaging
- Geometrical & Calorimetrical Recostruction

DETECTING NEUTRINOS: LARTPCS

SBND DETECTOR: OFF-AXIS ANGLES

SBND DETECTOR: OFF-AXIS ANGLES

 $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ $OAA \in [0.4^{\circ}, 0.6^{\circ})$ $OAA \in [0.6^{\circ}, 0.8^{\circ})$ $OAA \in [0.8^{\circ}, 1.0^{\circ})$ $OAA \in [1.0^{\circ}, 1.2^{\circ})$ $OAA \in [1.2^{\circ}, 1.4^{\circ})$ $OAA \in [1.4^{\circ}, 1.6^{\circ})$ The flux is maximal on axis and then it decreases moving away from the beam center.

SBND PRISM Precision Reaction Independent Spectrum Measurement

The v energy distribution is affected by the off-axis position. The neutrino flux was studied in each of the OAA regions, considering neutrinos' energy and associated leptons' momentum and scattering angles.

Electron Neutrino

Muon Neutrino

WHAT CAN WE IMPROVE?

(P. Abratenko et al. (MicroBooNE Collaboration) Phys. Rev. Lett. 125, 201803)

Leptons' Scattering Angle Distributions

Electrons

Leptons' Scattering Angle Distributions

Electrons

Leptons' Momentum Distributions

Electrons

Electrons Momentum Spectrum 1.2 $OAA \in [0.0^{\circ}, 0.2^{\circ})$ $OAA \in [0.2^{\circ}, 0.4^{\circ})$ 1.0 $OAA \in [0.4^{\circ}, 0.6^{\circ})$ $OAA \in [0.6^{\circ}, 0.8^{\circ})$ $OAA \in [0.8^{\circ}, 1.0^{\circ})$ 0.8 ve CC Events Events $OAA \in [1.0^{\circ}, 1.2^{\circ})$ $OAA \in [1.2^{\circ}, 1.4^{\circ})$ 0.6 С $OAA \in [1.4^{\circ}, 1.6^{\circ})$ 0.4 0.2 0.0 0.5 1.5 0.0 1.0 2.0 2.5 p_e [GeV] p_{μ} [GeV]

Total Distributions (full cosθ range):

Electrons

Muons

Muon Momentum (cosθ slicing)

Muon Momentum

With leptons going forward, there's a relevant distinction between momentum distributions at different OAAs.

This means that measurement's sensitivity grows in this region, which would remain unexplored without PRISM.

Slicing in OAAs can be important to understand this behavior, which is strictly linked to physics.

Thank You!

BACKUP

JDND LUIJM: MAMENIAM AND JPAIIEUINA ANAFE

Midterm Report August 29, 2022