Fermilab (Department of Science

π-Ar Quasi-elastic Scattering and Transverse Kinematic Imbalance Study

Sungbin Oh ProtoDUNE π-Ar QE and TKI Meeting 16 August 2022

Generator Level Studies

GEANT4 and **FLUKA**

• 1 GeV/c π^+ beam on thin (1 cm) LAr target

Event topology - Xianguo's idea

- Single nucleon knocking-out
 - Quasi-elastic : $\pi^+ + {}^{40}\text{Ar} \rightarrow \pi^+ + p + {}^{39}\text{Cl}$
 - Charge exchange : $\pi^+ + {}^{40}Ar \rightarrow \pi^0 + p + {}^{39}Ar$
 - To study π +-Ar quasi-elastic scattering cross section, TKI, and Fermi motion
- Double nucleon knocking-out
 - $\pi^+ + {}^{40}\text{Ar} \rightarrow \pi^+ + p + p + {}^{38}\text{S}$
 - $\pi^+ + {}^{40}\text{Ar} \rightarrow \pi^- + p + p + {}^{38}\text{Cl}$
 - A unique chance to study meson exchange with known incoming beam energy
- I reproduced Xianguo's work and studied background compositions

Signal process : $\pi^+ + {}^{40}\text{Ar} \rightarrow \pi^+ + p + {}^{39}\text{Cl}$

Particle selection

- Signal particles
 - Proton : IPI > 300 MeV
 - π⁺ : IPI > 100 MeV
 - π⁰ : full acceptance
- Background particles
 - π -, Kaon, and muon : IPI > 100 MeV

Event selection

• Exact number of signal particles : N(p) = 1, $N(\pi^+) = 1$, and $N(\pi^0) = 0$

🚰 Fermilab

- Allow any number of photons
- No background particles

Residual nuclear (X) mass

- Using four-vectors of beam, ⁴⁰Ar (at rest), out-going π + and proton
 - Four-vector of X : beam 40 Ar π + p

Smearing on final state particles

- Momentum : π⁺ (2%), π⁰ (5%), and proton (2%)
- Angle : 5% for θ and ϕ

³⁹Cl mass : 36298.5 MeV

Background composition

- GEANT4 vs FLUKA
- 70 80% signal fraction with mX < 36.310 GeV cut

6 16/08/22 Sungbin Oh I ProtoDUNE π-Ar QE and TKI Meeting

Energy loss of π+ : Eincoming - Eoutgoing

• GEANT4 vs FLUKA

‡ Fermilab

Can we select QE events using only out-going pion and not other final state particles? [link]

 E_{QE} using massive incoming pion

 $4E_{0}^{2}(A^{2}-P_{T}^{2}\cos^{2}\theta) + 4AE_{0}(A^{2}+B) + (A^{2}+B)^{2} + 4M_{T}^{2}B_{0}^{2}\cos^{2}\theta = D$ $A = M_{T}^{2} - P_{T}^{2} - M_{P}^{2}$ $M_{P}^{2} - E_{T} = B$

Two solutions for E_0 , E_{QE^+} and E_{QE^-}

Comparison between $E_{QE^{-}}$ and the approximated formula

• It is a pretty good approximation near the peak!

What is binding energy values used by the GEANT4?

• Scanned $E_{binding}$ in 0 - 50 MeV region to see which value gives $E_{QE^{-}}$ - $E_{Beam} = 0$ at the peak

Fitting function

$$f(x) = \frac{\alpha}{|+(|x-\mu|/6)^{6}} + bx + c$$

2D figure : outgoing π^+ momentum vs outgoing π^+ angle

- It seems that Δ^+ resonance QE is also simulated
- There are many interesting structures that can be studied

Used Samples for ProtoDUNE-SP Study

MC

• PDSPProd4a_MC_**1GeV**_reco1_sce_datadriven_v1_ntuple_v09_41_00_03.root

Data

• PDSPProd4_data_**1GeV**_reco2_ntuple_v09_41_00_04.root

Input beam root file

• G4beamlineVersion3.06

Using ProtoDUNE MC samples

Truth level information of 1 GeV/c beam MC sample

Event Selection

- Daughters not coming from broken beam track
 - True beam ID ≠ True daughter

- Used the exact formula : massive pion with neutral current QE proton knocking out (EQE-)
- E_{binding} = 4 MeV

- Difference between truth level beam particle energy at interaction point and EQE
- The QE peak is observed

- Difference between truth level beam particle energy at interaction point and EQE
- The QE peak is observed
- $E_b = 4$ MeV gives the peak near 0 MeV

Using ProtoDUNE MC samples at generator level

- Difference between truth level beam particle energy at interaction point and E_{QE}
- A clear QE band is observed
- E_b = 4 MeV

😤 Fermilab

Using ProtoDUNE MC samples at generator level

- Difference between truth level beam particle energy at interaction point and E_{QE}
- A clear QE band is observed
- E_b = 4 MeV

😤 Fermilab

🚰 Fermilab

Using ProtoDUNE MC samples

Using reconstructed information

Beam

- Using momentum measured by spectrometer
 - 10 MeV flat energy loss is assumed
- Kinetic energy of the beam at interaction point
 - CSDA using pion⁺ mass

Pion selection

- Basic selection
 - $N_{Hits} > 20$, track score > 0.5, and $\chi^2_{proton} > 60$, cos $\theta_{Beam,Daughter} < 0.95$, distance_{Beam,Daughter} < 10 cm
- Michel score > 0.5
- Energy of pion : CSDA using reconstructed track length

- For events passed the π^+ beam selection (in back-up)
- Number of reconstructed pions

- At least one reconstructed π^+ passing Michel score > 0.5 cut
- Small QE peaks are observed
- · But, many muon beam events at the QE peak position

- · I want to reduce muon beam background
- It is difficult to apply tighter cosθ cut : most of remaining QE events are there
- · Pions coming from muon beam events are usually soft
 - How about to apply cut on length (KE) of reconstructed π +?

- · I want to reduce muon beam background
- It is difficult to apply tighter cosθ cut : most of remaining QE events are there
- · Pions coming from muon beam events are usually soft
 - How about to apply cut on length (KE) of reconstructed π +?

- Muon beam contribution is reduced much
- Still, we need to enhance signal efficiency...
 - Interacted pions using hypothetical track length fitting method?

For pions not passing the Michel score cut

- Perform the hypothetical track length fitting
- Measure energy of interacted charged pion using dE/dx and residual range vectors
- Minimum χ^2 using Gaussian approximation
- Maximum likelihood using Vavilov PDF for dE/dx

‡ Fermilab

For pions not passing the Michel score cut

- · Perform the hypothetical track length fitting
- · Measure energy of interacted charged pion using dE/dx and residual range vectors
- · More statistics with lower muon background contribution
- · Poorer energy resolution compared to pions passed the Michel score cut

- · Measure energy using the hypothetical track length fitting method
 - Gaussian approximated least χ2 fitting
 - Best likelihood method using
 - Landau, Vavilov and Gaussian dE/dx PDF depending on κ value
- Performance comparison : 1 cm step in [0, 450] cm additional track length range

- · Measure energy using the hypothetical track length fitting method
 - Gaussian approximated least χ2 fitting
 - · Best likelihood method using
 - Landau, Vavilov and Gaussian dE/dx PDF depending on κ value
- Performance comparison

- ΔQE distributions
 - As expected, the likelihood method shows better performance for reconstruction of ΔQE
 - A peak at zero is observed

Data vs MC distributions

- Charged pions with Michel score > 0.5, energy using the CSDA
- A clear peak at zero from data : it could be muon's peak, need more study on it

Data vs MC distributions

- Charged pions with Michel score > 0.5, energy using the CSDA
- A clear peak at zero from data : it could be muon's peak, need more study on it

🚰 Fermilab

32 16/08/22 Sungbin Oh I ProtoDUNE π-Ar QE and TKI Meeting

Data vs MC distributions

- Charged pions with Michel score < 0.5, energy using hypothetical track length
- A clear peak at zero from the maximum likelihood method

Summary

Study for π^+ -Ar quasi-elastic scattering using the GEANT4 sample

- It is possible to select quasi-elastic event using only charged pion at the final state
- There is more complicated structure that can be studied

Study using ProtoDUNE-SP MC samples and data

- The QE peak is observed
 - We can select QE events only using final state charged pion and beam information
- Energy of out-going charged pion is required
 - Michel score > 0.5 cut and use range to measure energy
 - Best energy resolution, significant muon background, and low stat.
 - Utilized the hypothetical track length fitting method
 - Maximum likelihood method shows a good energy resolution
 - Clear QE peak with small muon background and more stat.
- Plan : test performance of E_{visible} (out-going charged pion and its daughters)
 - As an additional information for interacted charged pion energy measurement

🔁 Fermilab

Back Up

35 16/08/22 Sungbin Oh I ProtoDUNE π-Ar QE and TKI Meeting

ProtoDUNE-SP : Pion Beam Study

Basic beam selection

- MC : true beam PDG = 211 or ± 13
- Data
 - No cosmic trigger
 - N(reco beam particle) = 1
 - At least one of "beam_inst_PDG_candidates" should be 211 or ±13

Additional beam selection

- Pandora slice cut : beam is reconstructed as track by the Pandora
- Calo size cut : at least one reconstructed hit in the collection plane
- Beam quality cut : cut on beam angle and entrance positions
 - $-3 < dz/\sigma_z < 3$, $-1 < dxy/\sigma_{xy} < 3$, $\cos\theta > 0.95$
- Daughter Michel score < 0.55
 - Hit charge weighted average of CNN Michel scores near vertex

🔁 Fermilab

- Pass proton veto cut
 - $\chi^2_{proton} > 80$

Study for Quasi-elastic Scattering of Charged Pions - Thin LAr Target

Number of π + at final state

Fermilab

37 16/08/22 Sungbin Oh I ProtoDUNE π-Ar QE and TKI Meeting

Study for Quasi-elastic Scattering of Charged Pions - Thin LAr Target

E_loss_pion E loss pion OnlyOne Entries Entries 462.1 Mean 450.1 Mean 276.8 Std Dev Std Dev 275.0 Leading π^+ $N(\pi^{+}) == 1$ 900 1000 Eloss (MeV) Eloss (MeV) pionElossoutgoing Number of particles Entries Mean 467.1 274.1 Sydney's Std Dev 900 1000 Energy (MeV) 😤 Fermilab

Energy loss of π + : E_{incoming} - E_{outgoing}

16/08/22 Sungbin Oh I ProtoDUNE π-Ar QE and TKI Meeting

Daughter Particle Identification : Variables

MC 1 GeV/c sample with pion beam selection

Proton selection

• $\chi^{2}_{proton} < 50$, N_{Hits} > 20, Track score > 0.5

 π^+ selection

• $\chi^{2}_{proton} > 60$, N_{Hits} > 20, Track score > 0.5

Daughter Particle Identification : Variables

MC 1 GeV/c sample with pion beam selection

Proton selection

• $\cos\theta < 0.95$

 π^+ selection

• $\cos\theta < 0.95$

Daughter direction : $\overrightarrow{X_{Reco, End}} - \overrightarrow{X_{Reco, Start}}$ Beam direction : reco track direction

Daughter Particle Identification : Variables

MC 1 GeV/c sample with pion beam selection

Proton selection

• Distance < 10 cm

 π^+ selection

• Distance < 10 cm

Daughter Particle Identification - Pion Selection

Daughter Particle Identification - Proton Selection

P^{Start}_{True} (MeV)

For data vs MC comparison

- · Truth level beam momentum reweighting is applied
- Additional cut on P_{Beam Inst.}: 20 % window
- Pion beam : 78%
- Muon beam : 10%
- Beam track reconstructed by daughters (Misid.): 12%

For data vs MC comparison

- · Truth level beam momentum reweighting is applied
- Additional cut on P_{Beam Inst.}: 20 % window
- Additional variables
- Beam track length distribution

For data vs MC comparison

- · Truth level beam momentum reweighting is applied
- Additional cut on P_{Beam Inst.}: 20 % window
- Additional variables

Daughter variables

- · At least one reconstructed daughter
- Mismodeling on muon beam contribution is suspected
 - I need to go back to beam momentum reweighting
- $\gamma c\tau$ of 1 GeV/c π^+ is $\gamma \times 7.8$ m = 7.23 $\times 7.8$ m = 56.4 m
- H4-VLE beam's secondary target to ProtoDUNE distance is about 40 m : exp[-40/56.4] ~ 0.5

Beam simulation sample vs ProtoDUNE-SP MC

- Beam simulation
 - After the secondary target of the H4-VLE beam : $N(\mu^+)/N(\pi^+) = 0.83\%$
- ProtoDUNE-SP MC
 - $N(\mu^+)/N(\pi^+) = 26\%$ (smaller than 50%, need more study)

Data vs MC distributions

• Charged pions with Michel score > 0.5

Data vs MC distributions

• Charged pions with Michel score > 0.5

Data vs MC distributions

- Charged pions with Michel score < 0.5
- Fit not failed : maximum likelihood using the Vavilov PDF for dE/dx

Data vs MC distributions

- Charged pions with Michel score < 0.5
- Fit not failed : maximum likelihood using the Vavilov PDF for dE/dx

Using ProtoDUNE MC samples at generator level

- Difference between truth level beam particle energy at interaction point and E_{QE}
- A clear QE band is observed
- E_b = 4 MeV

😤 Fermilab